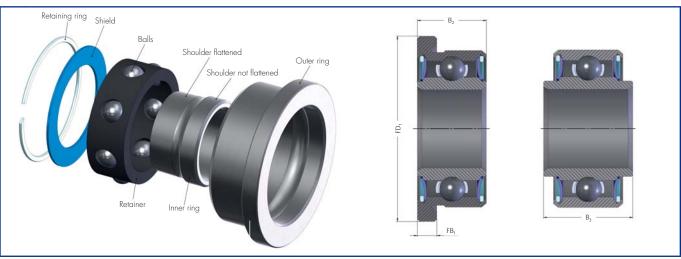
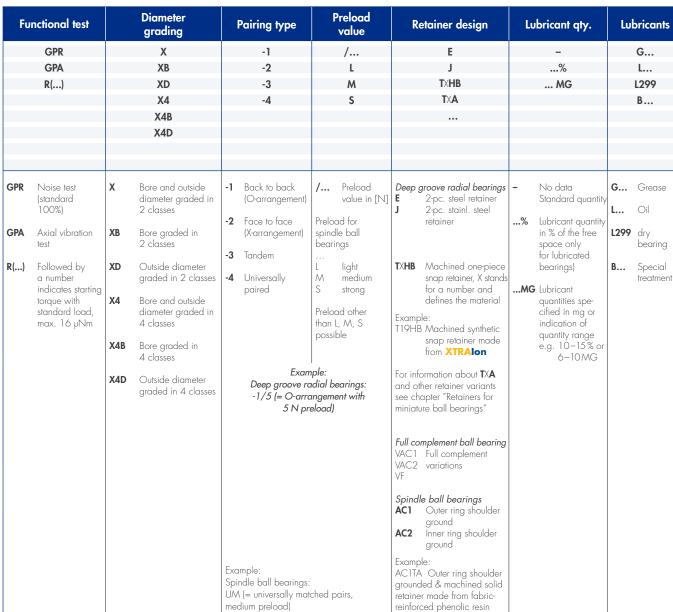


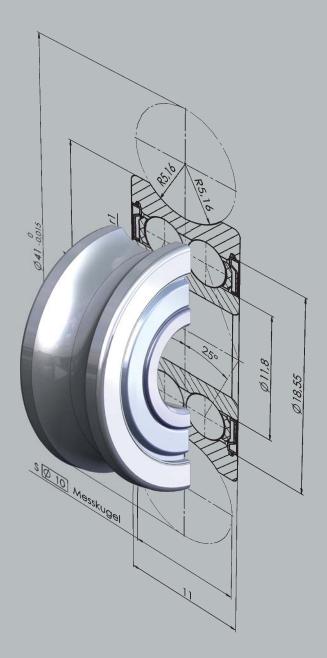
High-Precision Ball Bearings Product Catalog




Designation system of radial ball bearings – metric / inch

١	Ball material		Ring material	Version	Basic n	nark	Cover		Tolerance grade	R	adial clearance
			-	LE	625	625		-	P		C
	HY		SS	F	3/16		-Z		ABEC	ABEC K	
	ZO	ZO SV		E	625/603938		-27				D
			\$					-RZ			
			SA					-RS			
		N						-VZ			
			NZ					-VS			
								-TS			
-	Steel balls	-	100Cr6	LE Bearing unit	625	Metric	-	Open ball bearings	Standard tolerance grade	Metric d	leep groove radial
НҮ	· ·	SS	X65Cr13	F Flange	3/16	Inch	-Z	Single shield	PO or ABEC1	_	Standard clearance
пі	Ceramic balls made from	SV	X30CrMoN 15-1	E Extended inner ring	625/XXXXXX	Acc. to drawing	-2Z	Double shield	not marked	C2 C3	Narrower than standard Slightly increased radial
70	Si ₃ N ₄	S	440C			0	-RZ	Single Perbunan rubber shield,	P tolerance grade for metric	C4	clearance Increased radial clearance
20	Ceramic balls made from	SA	Antimagnetic material				-RS	non-contact Single Perbunan	bearings in P6, P5, P4 and P2	C5	Strongly increased radial clearance
	ZrO_2	Con N	nbination balls Full ceramic					rubber contact seal	ABEC tolerance grade	bearing	t values depend on the dimensions, see capter
			bearings (balls, IR, AR) of silicon nitride				-VZ	Single Viton shield, non-contact	for inch bearings in ABEC3 , ABEC5 etc.	clearanc	ssification of radial e".
		NZ	Full ceramic				-VS	Single Viton contact seal	Special tolerance	C1/5	radial clearance: f.e. 1 to 5 µm
			bearings (balls, IR, AR) made from				-TS	Single Teflon® contact seal	grades: ABEC9P, P4A, P4S,		4 to 8 μm 10 to 15 μm 14 to 20 μm
			zirconium oxide								pp groove radial bearings radial clearance: f.e. 0 to .0002" .0001" to .0003" .0004" to .0006" .0005" to .0008"
										D	Followed a by number indicates contract angle
										Spindle I C E	ball bearings Contact angle 15° Contact angle 25°
			ner materials ilable on request								

Designation system of radial ball bearings – metric / inch



Contents

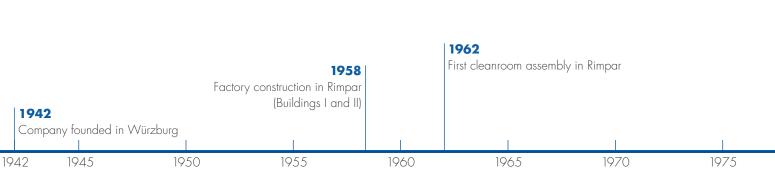
Our Company	2	Profiled rollers	72
Preface	3	Bearing units	73
reidce	3	Thin-section bearings	74
GRW Modular System		Hybrid and full ceramic ball bearings	75
Materials for rings and balls	4	Special ball bearings	76
Closures	5	Coated bearings	78
Retainers for miniature ball bearings	6		
Lubricants	8	GRW XTRA	00
Eurodemontale of Ball Boaring Docier		XTRA - Enhancing Performance	80
Fundamentals of Ball Bearing Design Shaft and housing shoulders	10	XTRAcoat - The new GRW coating system	81
Special installation configurations	11	XTRAlube - The lubrication for longer life	81
	12	XTRAIon - The premium retainer material	82
Fitting tolerances	14	Your success with GRW XTRA bearings	83
Load ratings and L-10 life		Accessories	
Limiting speeds	16	Shims	84
Elastic behavior of deep groove radial bearings	17	Spring washers	84
Relationship between radial play, axial play, contact angle and tilting angle	18	Retaining rings, shaft circlips, bore retaining rings	86
Calibration of bore and outside diameters	19	Service	
Reduction in radial play	20	Test equipment – Orakel III	88
Radial play classification	23	GRW laboratory services	89
Functional tests	24	Correct handling of GRW high-precision	90
Ball Bearing Portfolio		miniature bearings	
Tolerance and runout tables – inner ring	26	Packaging	00
Tolerance and runout tables – outer ring	28	GRW quality: International Certifi cation DIN EN 9100	92
Designation system for radial ball bearings – metric / inch	Cover	DII VEI V / 100	93
Deep groove radial ball bearings – metric	30	Manufacturing in a Nut Shell	94
Deep groove radial ball bearings – inch	52		0/
Spindle / angular contact bearings	58	Index	96
Duplex bearings	59		
Installation and configuration of duplex ball bearings	60		
Designation system for spindle ball bearings	62		
Spindle ball bearings	64		

Our Company

As a global corporation with more than 500 employees, GRW is headquartered in Rimpar, near Würzburg, with assembly facilities in Prachatice (Czech Republic) and a direct sales office in the USA

GRW is the premier developer and manufacturer of miniature precision ball bearings, assemblies and accessory parts utilizing state-of-the-art equipment and manufacturing processes. We specialize in production of high precision, small, miniature and instrument bearings as well as spindle bearings and bearing units. GRW also welcomes the opportunity to design, develop and produce customized applications using customer specifications.

Our radial ball bearings range in bores from 1 mm to 35 mm with outer diameters from 3 mm to 47 mm meeting any condition from mini series to high volume standard applications.


GRW bearings are produced in both metric and inch dimensions making them truly applicable to any customer in the world. Whether your application reguires mini series, standard high volume or customized specifications, you can always rely upon GRW to meet any requirement or challenge.

GRW complies with the highly recognized standard of quality in process and performance as evident by our ISO certification, DIN EN 9100:2018.

Headquarter and production site at Rimpar

GRW... the premier provider for customized high-precision ball bearing solutions.

Preface

"Miniature precision meets extreme demands"

In order to successfully meet the challenges of the market, our products are being continuously developed and their performance improved, based on the latest innovations from GRW.

Developments that we have achieved in the areas of product design, ball bearing steels, retainer design and materials, lubricants and surface coatings, are the basis for the technological leadership the company has today.

Our latest advance: XTRA - Enhancing Performance!

With GRW XTRA, we are not so much reinventing the ball bearing but using our expertise to improve, for example, performance levels in terms of running noise, service lifetime and speed! The ball bearing designed by GRW to your individual requirements acquires superior performance due to XTRA.

See page 79 of this product catalog for more details.

Extension of Rimpar site

buildings III and IV

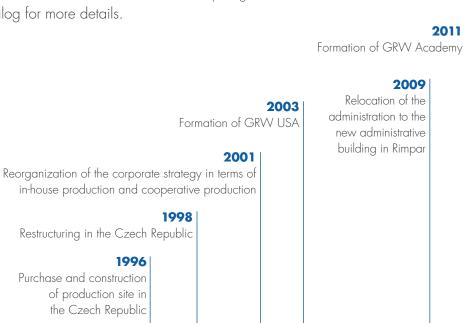
1985

Purchase and construction of production site in

the Czech Republic

We can do even better - just challenge us.

Our sales engineers are available to consult with you.


We are looking forward to your call:

USA: +1 (860) 769 3252

+65 6725 9861 Singapore:

Construction of the new production site in the Czech Republic Opening of new sales office on the East Coast of the USA

2005

2010

2013

2 | 3 ww.grwbearing.com

1980

Materials for rings and balls

GRW ball bearings are manufactured by using technological advancements in steel production and heat treatment. Our ball bearings are made of chrome steel (100Cr6), stainless steel (X65Cr13), or high corrosion-resistant steel (X30CrMoN 15-1). It is now possible to achieve comparable load ratings for all these steel types.

Ceramic balls, e.g. hybrid ball bearings, can be used in all versions as required by your application.

Hybrid ball bearings

GRW hybrid, or ceramic ball bearings are made of one of the steels previously mentioned as well as silicon nitride (Si_3N_4) or zirconium oxide (ZrO_2) , both which offer specific benefits.

These types of bearings are used most commonly in dental handpieces, spindle bearings and vacuum pumps to extend speed limits or increase bearing stiffness.

Using GRW Si₃N₄ ceramic balls reduces load rating by 30 %, while the dynamic load rating remains unaffected.

The low affinity to other materials allows a particularly low adhesive wear. As a result, hybrid or ceramic bearings provide extended lifetime run times when used in mixed-torque applications.

Materials for rings and balls

Prefix	Unit	-	SS	sv	НҮ	zo
DIN		100Cr6	X65Cr13	X30CrMoN 15-1	Si ₃ N ₄	ZrO ₂
DIN		1.3505	1.4037	1.4108		
SAE		52100				
Properties						
Density	[g/cm³]	7.81	7.7	7.7	3.2	6.0
Hardness	[HRE]	> 60	> 58	> 58	> 75	> 69
E-module	[GPa]	212	220	223	320	200
Expansion coefficient	[x 10-6°C]	11.0	10.5	10.4	3.0	10.5
Corrosion resistance	[-]	limited	good	very good	very good	good
Electrical conductivity	[-]	conductor	conductor	conductor	insulator	insulator
Magnetism	[-]	magnetic	magnetic	magnetic	non magnetic ⁽¹⁾	non magnetic

⁽¹⁾ May contain magnetic parts for production technology reasons

Our sales engineers will gladly inform you about the chemical resistance properties of the materials. Subject to change.

Closures

Integrated ball bearing shields and seals provide two vital purposes: to prevent dirt and foreign particles from infiltration and to prevent lubricants from leaking out.

Non-contact shields

Together with the shoulder of the inner ring, the closure creates a narrow gap. Similar to open ball bearings, this closure neither increases running friction nor limits the maximum permissible speed because the shields do not touch the inner ring. This is sufficient for most applications. Shields prevent contamination with dirt particles but cannot achieve a hermetic seal

Metal shields Z

For the majority of our bearings, shields are stamped from corrosion-resistant steel. They are fastened and secured to the outer ring by means of a circlip and can thus be removed. Bearings can also be fitted with pressed-in shields made from a deep drawn steel sheet; these shields cannot be removed.

RZ/VZ rubber seal

The RZ closure is made of synthetic buna N rubber with a steel support shield and can be used at temperatures from -30 $^{\circ}$ C to +120 $^{\circ}$ C.

The VZ closure is made of synthetic Viton fluoroelastomer with steel support shield and can be used at temperatures from -20 $^{\circ}$ C to +230 $^{\circ}$ C.

Both shield types are secured by snap fit.

Contact seals

This type of seal touches the shoulder of the inner ring, causing an increase in start up and running torque.

Teflon[®] seals can be used at working temperatures of -240 °C to +300 °C. The friction is lower than for rubber seals due to the low friction combination (PTFE /steel) and the low contact force of the sealing lip.

Teflon® seal TS

The TS seal is made of a glass-fiber reinforced Teflon® sheet that is fastened in the outer ring by means of a circlip.

TS seals are universally resistant to chemicals. Bearings using TS seals are normally made of corrosion-resistant steel. In appropriately large quantities, TS seals can also be made available for chrome steel bearings.

RS/VS seals

The RS seal is made of synthetic buna N rubber with a steel support shield and can be used at temperatures from -30 $^{\circ}$ C to +120 $^{\circ}$ C.

The VS seal is made of synthetic Viton fluoroelastomer with a steel support shield and can be used at temperatures from -20 $^{\circ}$ C to +230 $^{\circ}$ C.

Both shield types are secured by snap fit.

Custom shields and seals

GRW can also manufacture custom accessories and combinations of different shields and seals to meet your specifications.

For improved sealing effect between steel shields and outer ring GRW offers a special laminated shield.

In this context, we would like to point out that certain lubricants cannot be used with all closures. Please consult our sales engineers about difficult applications.

Retainers for miniature ball bearings

Retainers are vital for efficient operation of ball bearings. First, they keep the balls separated and evenly spaced, ensuring a uniform distribution of load and thereby reducing heat while enhancing the bearing life expectancy.

Secondly, the retainer guides the balls in the load-free zone and prevents the balls from dropping out of

separable bearings. Using our customized designs and materials, retainers can be manufactured to meet any application. We recommend usage of a two-part ribbon retainer for the majority of applications.

In this context, we would like to point out that certain lubricants cannot be used with all retainers.

See the following list for our range of different retainer variants:

GRW retainer designation	Illustration	Description/ material	Scope of application / purpose					
JH	0	Two-piece retainer made from – steel sheet (E) – stainless steel sheet (J) Retainer clamping types: – without additional sign = standard – F = retainer tightly clamped – L = retainer loosely clamped One-piece snap-type retainer made of	E/J: Standard retainer for deep groove radial bearings. For stainless bearings: retainer always made from stainless steel sheet. To avoid torque peaks as far as possible, this retainer can also be mounted in a loosely clamped condition. JH: For deep groove radial bearings. Used primarily for small ball bearings and low to					
		stainless steel (JH)	medium speeds.					
TNH	0	One-piece molded synthetic snap retainer.	For deep groove radial bearings in medium speed range with good running and torque characteristics. Working temperature from -30°C to +80°C, short term up to +100°C.					
TNXH	O	One-piece molded synthetic snap retainer made from glass fiber reinforced plastic. X stands for a number and defines the material.	For deep groove radial bearings in a speed range above that of the TNH retainer. Working temperature from -30°C to +120°C, short term up to +180°C.					
THA THB		Machined one-piece snap retainer made from fiber-reinforced phenolic resin. A = outer ring guided B = inner ring guided	For deep groove radial bearings with very high speeds. High rigidity and emergency running properties. Working temperature from -50°C to +130°C. Can be impregnated with oil.					
TXHA TXHB XTRAIon		Machined one-piece snap retainer made from a special material. X stands for a number and defines the material. A = outer ring guided B = inner ring guided	For deep groove radial bearing with very high speeds. High rigidity and emergency running properties. Working temperature, depending on the material, up to +250°C or even +300°C.					
		These retainer can also be ordered with our new retainer material XTRAIon , for even longer service life! Please find more information about XTRAIon on page 82.						

GRW retainer designation	Illustration	Description/ material	Scope of application / purpose					
L2T		L2T =inner ring separable, outer ring guided	For separable angular contact ball bearings/ spindle bearings with highest speeds. High rigidity Working temperature from -50 °C to +130 °C. Can be impregnated with oil.					
L2TX XTRAIon		L2TX = inner ring separable, outer ring guided X stands for a number and defi nes the material.	For separable angular contact ball bearings/spindle bearings with highest speeds. High rigidity and emergency running properties. Working temperature, depending on the material, up to +250 °C or even +300 °C.					
		These retainer can also be ordered with our new retainer material XTRAIOn , for even longer service life! Please find more information about XTRAIOn on page 82.						
TA/TB		Machined one-piece solid retainer made from fiber-reinforced phenolic resin. A = outer ring guided B = inner ring guided Only used with AC types. Non-separable.	For angular contact bearings/spindle ball bearings with highest speeds. High rigidity and emergency running properties. Working temperature from -50 °C to +130 °C. Can be impregnated with oil.					
TXA/TXB XTRAIon		Machined one-piece solid retainer made from a special material. X stands for a number and defines the material. A = outer ring guided B = inner ring guided Only used with AC types. Non-separable.	For angular contact bearings/spindle ball bearings with highest speeds. High rigidity and emergency running properties. Working temperature, depending on the material, up to +250 °C or even +300 °C.					
		These retainer can also be ordered with our new retainer material XTRAIon , for even longer service life! Please find more information about XTRAIon on page 82.						
VAC1 VAC2		Full complement bearing, without retainer, cannot be disassembled. VAC 1 = shoulder relieved on outer ring VAC2 = shoulder relieved on inner ring Outer ring or inner ring shoulder ground on one side.	Used for medium speeds, high radial loads and high axial loads in one direction.					
VF		Full complement ball bearing, without retainer, non-separable, with filling slot for inserting the balls.	Used for medium speeds and high radial loads.					

As not every retainer is available for all sizes, please contact us for additional information. We will gladly recommend other bearing and retainer designs as well as retainer materials for special requirements.

GRW offers some of the highest performance synthetic materials including **Vespel**®, **Torlon**®, **PEEK**, **PTFE** and **Meldin**® as well as various metallic materials and phenolic resins.

In addition to using proven materials, GRW, in close cooperation with its customers and suppliers, is constantly developing new options or enhancing existing variations. As a result, GRW is the sole owner of some exclusive licenses and patents for using specifically developed retainer materials such as the new developed premium material XTRAION. Detailed information concerning XTRAION you can find on page 82.

Lubricants

Why do bearings need lubricants?

Miniature ball bearings are perfect for high stress environments, but require special lubricants to minimize wear, in order to increase operational life, performance, and safety of the product.

GRW lubricants provide permanent lubrication to minimize sliding friction between balls, rings and retainer. This prevents excessive wear and thermal overheating, protecting balls and raceway from micro-welding and thereby extending operational life while reducing running noise. The bearing application specification determines the best type of lubrication to use.

Grease Inbrigation

Thanks to their ability to dispense a lubricating film over time, grease lubricants offer an additional advantage when being used in maintenance-free applications.

Most of GRW bearings are grease-lubricated, with approximately 300 different greases to select from. The standard recommended amount of grease (lubricant quantity) is one-third (33%) of the remaining free space in the bearing. Grease quantities deviating from this standard are indicated in the bearing part number just before the type of lubricant, preferably in percent or alternatively in milligrams.

Furthermore, our customers can choose other special treatments for grease applications, for example a

dispersion or a thin defined layer of grease. Here the designation system differentiates between TF (thin film), MF (medium film) and SF (strong film).

Oil lubrication

Miniature bearings lubricated with oil may offer advantages over those lubricated with grease.

Oil is primarily used in applications where a minimal torque is required. In particular, high speed spindle bearings are typically lubricated with high performance oils.

When compared to grease lubrication, oil lubrication sometimes uses a dispersion of oil and a solvent to achieve a better distribution of oil throughout the bearing.

With more than 100 special oils to choose from, GRW can help you to select the oil that perfectly matches your application. If no special lubrication is needed, all of our bearings whether open or shielded, are preserved with light instrument oil when they leave our factory.

Proper lubrication practices

At GRW, all bearings are lubricated during final assembly under clean-room conditions. Since dust particles can cling to the oiled or greased bearings, it is important that the customer maintains a high standard of cleanliness in their application. In addition we recommend using a clean-room for removal of the bearings from their package and during assembly.

With greased bearings, the specified quantity of lubricant, accurate to milligrams, is injected directly into specified locations of the miniature ball bearing. Usually the lubricant is injected from only one side, however it is also possible to lubricate each bearing from both sides for better distribution.

For lubrication with standard oils, the oil is poured over the bearing which is then spun. Alternatively, a specified oil quantity can be directly injected into the bearing.

Solid lubricants

Non-lubricated bearings may be used in certain applications and are also available from GRW. These non-lubricated bearings are typically required for ultra-high vacuum (UHV) temperature extremes and for applications in aviation and aerospace. Here the operating conditions go beyond the functional limits of oil and grease lubricants. The use of a bearing without a protective lubricant will negatively impact its tribological system; however lubrication with solids is a viable alternative.

GRW offers its customers a variety of different dry film coatings. Applying thin layers of precious, Wolfratherm $^{\mathbb{R}}$ or MoS_2 provides protection and lubrication for the bearing.

For oil or grease lubricated bearings, this process ensures reliable performance in case of lubricant deprivation (emergency running conditions). In GRW's part numbering system, the surface treatment of bearing components is indicated by a "B", followed by a four-digit number code indicating the type of surface treatment.

Custom treatments

In addition to varying lubricants and surface treatments, GRW can custom treat bearing components to improve tribological behavior. For example, the phenolic retainer can be vacuum-impregnated with oil (up to 5% by weight). The benefit of a vacuum-impregnated retainer is its ability to release small amounts of lubricant continually during operation. This process improves the general lubrication performance and ensures emergency running properties in lube deprived situations.

Lubricants in medical applications

Sterilization (autoclaving) is mandatory for the proper use and maintenance of medical instruments according to the guidelines of the Robert-Koch Institute. This applies to the hygienic treatment of surgical devices and dental turbines that depend on miniature ball bearings.

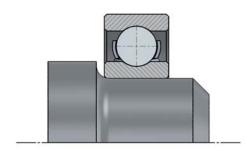
GRW's stainless steel and retainer materials can easily withstand sterilization in an autoclave subjected to superheated steam, where most lubricants do not survive. Combined with the extreme high speed stresses of dental turbines, these lubricants are required to provide exceptional surface adhesion and sterilization resistance.

As manufactured, GRVV bearings utilize a range of lubricants that are resistant to the sterilization process and well suited for dental and surgical devices. This optimization results in a longer life under extreme environmental conditions.

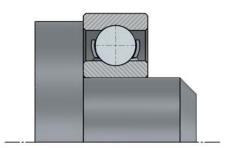
XTRAlube

For enhanced performance and longer life time we recommend the new by GRW developed lubrication **XTRAlube**.

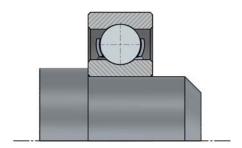
More information about **XTRAlube** you can find on page 81.


GRW HIGH DECISION BAIL BEADING

Shaft and housing shoulders

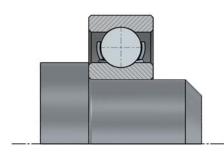

Certain design and assembly factors are critical for optimum performance of bearings. For instance, shaft and housing shoulders should accurately allow axial load to be transferred to the inner and outer ring without permitting the rings to tilt in opposite directions.

The associated dimension tables provide limits for the largest ($d_{a \text{ max}}$) and the smallest ($d_{a \text{ min}}$) permissible shoulder diameter for the inner ring and the largest permissible shoulder diameter for the outer ring ($D_{a \text{ max}}$).

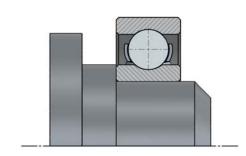

See Dimension Tables on pages 30 to 57.

Wrong, Shaft radius greater r. min

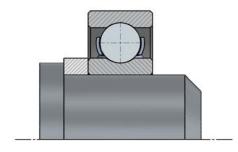
Wrong, Shaft shoulder greater than damax



Wrong, Shaft shoulder smaller than damin


Note: Similar examples apply to bearing housings.

Please note the following considerations:


- The housing shoulder diameter for the outer ring must always be smaller than (D_{a max}) and the shaft shoulder diameter at the inner ring must not be smaller than (d_{a min}).
- The corner radius between fit and shoulder must not be larger than the corner clearance (r_{s min}) of the bearing. Here an undercut is preferable to a corner radius. The edge radii of the bearing are not designed as a locating surface for the bearing in any way.
- The axial runout of the mating surfaces should not be greater than the maximum axial runout of the bearing used. Otherwise the function of the bearing will be compromised.

Correct, Shaft radius smaller than $r_{s,min}$

Correct, Shaft shoulder equal with inner ring shoulder

Correct, Support ring in place

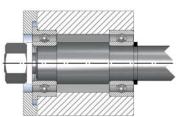
Special installation configurations

Flanged bearings

Using miniature and instrument bearings with a flange on the outer ring offers several advantages.

Stepped housing bores, which make it impossible or very difficult to maintain accurate alignment of both bearing fits, are no longer necessary. There is also no need for the use of circlips, which create difficulties in small housing bores or thin-walled housings.

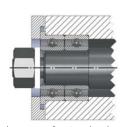
Flanged bearings assembled in narrow housings, such as gearboxes, are particularly effective.

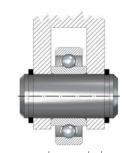

This allows for the accurate axial positioning of the Duplex bearing pair.

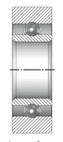
Bearings with extended inner rings

Bearings with an extended inner ring simplify design and mounting of various assemblies. Shims, washers and other spacers are not necessary. Stepped shafts are also redundant.

Bearings with reinforced outer ring


Ball bearings whose outer rings are supported by the proper housing fit can withstand the highest loads. To increase the load capacity of a bearing which is not pressed into a housing, it takes advantage of a reinforced outer ring. These types of bearings can be used as "rollers".


Proper installation, general


Assembly in narrow housings

Application of a Duplex bearing

Bearings with extended inner ring

Bearings with reinforced outer ring

Fitting tolerances

Among other factors, the fit of the bearing on the shaft and in the housing significantly affects the operational behavior of miniature ball bearings. When selecting fitting tolerances the following criteria should be considered:

Rotation conditions

Rings with circumferential loading should have a tighter fit than rings with a single point load. Circumferential loading occurs when the ring is rotating and the load is static, or when the ring is static and the load is rotating.

Point loading occurs when the rings and loads are both static, or when the rings and loads are both rotating in the same direction with equal speed. Please refer to the table "Shaft tolerances" and "Housing tolerances".

Running accuracy

The same high standards of accuracy and surface quality applicable to the bearings must be applied to the shaft and housing bore.

Loading

Higher loads require a tighter fit between ball bearing, shaft and housing.

Temperature

There may be temperature differences between the bearing and mating components while the bearing is in operation. Dimensional changes caused by differential thermal expansion should be considered when selecting a bearing.

With miniature bearings it is very important to select the proper fit for the highest accuracy and reliability, hence only a close sliding or transition fit is generally required. In addition irregularities on the shaft or in the housing bore are transferred to the relatively thin-walled bearing rings.

In order to improve the fit, it is possible to classify and sort the bore and outside diameters into groups (also refer to the chapter "Calibration of bore and outside diameters"). The values shown in these tables "Shaft tolerances" and "Housing tolerances" are only valid for materials with the same expansion coefficient (11 x 10^{-6} 1/K). For different expansion coefficients, or when there are temperature differences between the bearing rings and the shaft or housing, a tolerance should be selected which ensures the appropriate fit at operating temperature.

Note: For certain environmental conditions, an adhesive may be used to secure the bearing rings. Please contact our sales engineers for additional information.

Recommended fittings

The recommended fits listed below assume mean tolerances obtained from empirical performance data.

Shaft tolerances

Bearing bore Quality → Tolerance in µm Tolerance in .0001 inch →	PO 0/-8 0/-3	P5 0/-5 0/-2	0/-2.5 0/-1	ding -2.5/-5 -1/-2	Type of fit
Operating conditions	-, -	-/ -	-, .	., _	
Low load Medium speeds No oscillations	-5/-13 -2/-5	-5/-11 -2/-4	-5/-8 -2/-3	-8/-11 -3/-4	Slide fit
Low to medium loads Medium speeds Low oscillations	0/-8 0/-3	0/-6 0/-2.5	0/-3 0/-1.2	-3/-6 -1.2/-2.5	Tight fit
High loads High speeds Oscillations at high frequency	+4/-4 +1.6/-1.6	+4/-2 +1.6/-1	+4/+1 +1.6/+.4	+1/-2 +.4/-1	Press fit

Subject to change.

Housing tolerances

Ball bearing outer diameter Quality →	PO	P5	Gra	Type of fit	
Tolerance in µm Tolerance in .0001 inch →	0/-8 0/-3	0/-5 0/-2	0/-2.5 0/-1	-2.5/-5 -1/-2	
Operating conditions					
Low load Medium speeds No oscillations	+5/-3 +2/-1.2	+5/-1 +2/4	+5/+2 +2/+1	+2/-1 +1/4	Slide fit
Low to medium loads Medium speeds Low oscillations	0/-8 0/-3	0/-6 0/-2.5	0/-3 0/-1.2	-3/-6 -1.2/-2.5	Tight fit
High loads High speeds Oscillations at high frequency	-4/-12 -1.6/-5	-3/-9 -1.2/-3.5	-3/-6 -1.2/-2.5	-6/-9 -2.5/-3.5	Press fit

Subject to change.

Note:

The information on this page applies to steel shafts and housings. If applicable, linear expansion coefficients of other materials (e.g. aluminum housings) must be taken into consideration for other operating temperatures.

For more information on grading, refer to the chapter "Calibration of bore and outside diameters".

Load ratings and L-10 life

The static radial load rating Cor

The basic static radial load rating ($C_{\rm Or}$) applies to bearings which rotate at very slow speeds, which are subjected to slow oscillations or are stationary under load. Per DIN ISO 76, the basic static radial load rating is the static radial load corresponding to a calculated contact stress of 4200 N/mm² at the center of the contact ellipse of the most heavily loaded ball or raceway. If the contact pressure exceeds this maximum permissible value, plastic deformation will occur affecting the efficient operation and the life of the bearing. In other words, the basic static radial load rating is the maximum allowable radial load for the bearing. The basic static radial load rating for hybrid bearings with ${\rm Si}_3{\rm N}_4$ balls will be approximately 30 % lower than for steel ball bearings.

Static bearing capacity

Static loads including radial and axial components must be converted into the static equivalent radial load (P_r) to assess the static bearing load capacity. (P_r) is the static radial load which causes the same contact stress at the center of the contact ellipse of the most heavily loaded ball or raceway which occurs under actual load conditions. It is defined as follows:

$$P_r = X \cdot F_r + Y \cdot F_\alpha$$

P, : Static equivalent radial load [N]

X : 0,6 Y : 0,5

 F_r : Largest radial load occurring [N] F_a : Largest axial load occurring [N]

Where: $P_r = F_r$ if $P_r < F_r$

Basic dynamic radial load rating C_r

According to DIN ISO 281, the basic dynamic load rating (C₁) for radial ball bearings is the constant radial load at which a sufficiently large group of apparently identical bearings can endure one million revolutions before showing evidence of material fatigue.

Fatigue load limit C_u

The fatigue load limit ($C_{\scriptscriptstyle U}$) is defined as the radial load under which no material fatigue will occur. For ball

bearings manufactured with commonly used high-quality materials, the fatigue load limit is reached at a contact stress of approximately 1500 N/mm².

The load ratings calculated in this Product Catalog have been computed using a curvature of 52-53 % according to DIN ISO 281. Depending on the bearing geometries, the actual load ratings may differ.

Nominal life L₁₀

The "nominal life" (L_{10}) of a group of apparently identical ball bearings is the life in millions of revolutions, or number of hours, that 90 percent of the group will complete or exceed before the first evidence of material fatigue occurs. For a single bearing, (L_{10}) also refers to the life associated with 90 percent reliability.

This calculation per ISO DIN 281 assumes identical operating conditions including a constant lubricating film separating the ball complement from the raceway during the entire life of the bearing.

The L-10 life of miniature ball bearings is calculated as follows:

$$L_{10} = \left(\frac{C_r}{P_r}\right)^3$$

 L_{10} : basic rating life for a reliability of 90 % [10^6 revolutions]

 C_r : basic dynamic radial load rating [N]

P, : dynamic equivalent radial load fatigue occurs.

Taking a constant speed for granted, then the number of revolutions may also be expressed as L-10 life in hours (L_{10h}) :

$$L_{10h} = \frac{10^6}{60 \cdot n} \cdot \left(\frac{C_r}{P_r}\right)^3$$

with

L_{10h}: basic rating life L10 [h]
n : speed of the inner ring [min⁻¹]
C_r: basic dynamic radial load rating [N]
P_r: dynamic equivalent radial load [N]

Extended modified rating life L_{nm}

In addition to the nominal life rating (L_{10}), DIN ISO 281 introduced an extended modified life rating (L_{nm}), and adds a life coefficient (a_1) and operating conditions ($a_{\rm ISO}$). In application, life rating may be considerably higher or lower than the nominal L-10 life (L_{10}). The following correlation applies:

$$L_{nm} = \alpha_1 \cdot \alpha_{ISO} \cdot L_{10}$$

 L_{nm} : extended modified rating life [10^6 revolutions]

 a₁: Rating life coefficient for a requisite reliability deviating from 90 %

a_{iso}: Rating life coefficient for consideration of operating conditions

L₁₀: basic rating life for a reliability of 90 % [10⁶ revolutions]

Rating life coefficient for Relability a₁ acc DIN ISO 281

Reliability %	L _{nm}	α
90	L _{10m}	1
95	L _{5m}	0.64
96	L _{4m}	0.55
98	L _{3m}	0.47
98	L _{2m}	0.37
99	L _{lm}	0.25
99.2	L _{O,8m}	0.22
99.4	L _{O,6m}	0.19
99.6	L _{O,4m}	0.16
99.8	L _{0,2m}	0.12
99.9	L _{O,1m}	0.093
99.92	L _{0,08m}	0.087
99.94	L _{0,06m}	0.080
99.95	L _{0,05m}	0.077

The standardized calculation method for the life rating coefficient (a₁₅₀) takes the following factors into account:

- load on the bearing
- lubrication condition
- fatigue limit of the material
- geometry of the bearing
- internal stress of the bearing
- environmental conditions

Significance of the life rating for miniature ball bearings

All standardized methods for calculating the L-10 life assume that failure is attributable to material fatigue. However, this type of failure occurs very rarely in miniature ball bearings. Rather, miniature ball bearing malfunctions are usually attributed to contamination, retainer wear or lubricant failure. Therefore, L-10 life is theoretical and merely a guide. When estimating the L-10 life of a miniature ball bearing, the exact environmental conditions of the application should be considered.

Limiting speeds

Various mechanical and kinematic factors impact the maximum operational speed of a bearing. The following factors can have an effect on the limiting speed:

- Retainer load
- Noise
- Rolling kinematics
- Lubrication
- Heat generated by friction and the environment
- Inner ring slippage and radial play reduction

Retainer loading

In miniature bearings, the speed limit can be determined among other factors by the retainer material and its design.

Practical experience has shown that machined synthetic retainers are better qualified for the highest speeds. These retainers generate smaller imbalance at high speed because of their small mass and the accuracy by which they are manufactured. They are characterized by higher density and elasticity enabling them to withstand the alternating forces generated from ball acceleration and deceleration.

With more than 40 different retainer materials, our product range offers an appropriate technical solution for nearly every application.

Heat

All bearing assemblies have a maximum operating temperature, which ultimately limits the bearing speed. This maximum temperature is not only defined by the bearing's mechanical components, but also by the temperature range of the lubricant. In general, the operating temperature achieved at a certain speed depends on the torque generated in the bearing and the assembly's ability to transfer heat to the environment.

This assumption is the basis for calculating the thermal reference speed as noted in DIN ISO 15312.

Thermal reference speed

The thermal reference speed $(n_{\theta r})$ defines the speed of the inner ring at which a balance is achieved between the heat generated in the bearing by torque and the heat flow dissipated through the shaft and housing.

For the standardized calculation method noted in DIN ISO 15312, the following conditions apply:

- Mean ambient temperature $\vartheta_{\Lambda_c} = +20$ °C
- Static temperature at the outer ring $\vartheta_{c} = +70$ °C
- Standard bearings without seals
- 5% of the static load rating as pure radial load
- Lubricant: mineral oil with a kinematic viscosity of $v_{c} = 12 \text{ mm}^2/\text{s}$ at $\vartheta_{c} = +70 \text{ °C}$

Significance of the thermal reference speed

The calculation of the thermal reference speed is general and does not take into consideration application specific conditions. As such the thermal reference speed is to be used merely as a guideline value allowing for direct comparison of the different bearing sizes.

Significantly higher speeds can be achieved with special modifications of the components surrounding the bearing and of the bearing itself. Through the use of $\mathrm{Si_3N_4}$ (ceramic) balls, a highly accurate synthetic retainer, a higher bearing tolerance grade and a high-performance lubricant, significantly higher speeds can be achieved.

Elastic behavior of deep groove radial bearings

With ball bearings, two types of deformation have to be distinguished: axial and radial elastic deformation.

Axial elastic deformation

The axial elastic deformation of a ball bearing is the distance that the inner ring moves axially relative to the outer ring when the axial clearance of the ball bearing has been removed and an increasing axial load has been applied. This value does not increase linearly with increasing axial load; rather the contact ellipses between balls and raceways become larger as the load increases

Radial elastic deformation

Similarly the radial elastic deformation is caused by a radial load component after radial clearance has been removed. Under otherwise identical conditions, with a small contact angle, the radial elastic deformation is considerably less than the axial elastic deformation. With an increasing contact angle, the radial yield increases while the axial yield decreases until both values become roughly identical at approximately 35°.

Both types of deformation depend on the internal geometries of bearing, the existing radial clearance and applied load.

Effect and application

The relatively large amount of yield can be reduced by using preloaded bearing pairs (see chapter "Duplexed bearings"). Preloading will result not only in a reduction of the elastic yield, resulting in increased stiffness, but also in a nearly linear relationship between loading and yield for a considerably wide range of applied loads.

For example: A ball bearing pair with a 10 N preload will maintain linearity up to approximately 30 N of applied axial load. Exceeding this load value will cause the balls to lose contact with the raceway transferring the load to one bearing.

The following formula provides an estimation of the axial preload:

Fv: axial preload [N]
Fa: axial bearing load [N]

With a contact angle of 15° (C), the radial stiffness of bearing pairs is assumed to be approximately six times as high as the axial stiffness. With a contact angle of 25° (E), a factor of 2 is assumed.

Specific material properties always play an important role. In hybrid bearings using ceramic balls (e.g. Si_3N_4 , ZrO_2) the material properties of the ceramic balls should be taken into consideration. Due to the lower elasticity of the ceramic material, these bearings are stiffer than bearings assembled with steel balls. The stiffness of bearings using balls made of Si_3N_4 is about 30 % higher than the stiffness of bearings using steel balls.

Specific applications must consider the operating temperature which can affect the bearing clearances. Likewise, differing thermal expansion coefficients may play a decisive role in bearing material selection.

For further information, please contact your nearest GRW Sales Representative.

Relationship between radial play, axial play, contact angle and tilting angle

Radial play

Radial play has minimal effect on the quality of a bearing; however it does have a significant effect on its performance. For example, the bearing's life rating, running noise, vibrations and thermal behavior all depend on the appropriate radial play. (See chapter: "Reduction in radial play")

Radial play is the measurement of the total movement of one ring relative to the other in a plane perpendicular to the bearing axis. In selecting the appropriate radial play, the fit of the bearing on the shaft and in the housing is of particular importance.

Larger than the standard radial play (4-11 μ m) should be selected if the ball bearing runs under axial preload and operates at high speeds, or if low torque is required.

Less than standard radial play should be specified if a radial load is applied or low noise is required.

Less than standard radial play is often specified to reduce the axial play in the application. When a very low axial is required we recommend using duplexed bearings (see the chapter "Duplexed bearings").

In deep groove bearings, there is a definite correlation between radial and axial play that is controlled by the internal geometries. For the individual radial play groupings and their respective references, refer to the section titled "Radial Play Classification".

Axial play

The axial play is the measured value in which one bearing ring can move axially in relation to the other with no applied load.

Contact angle

In a load-free condition, the contact angle is called the nominal contact angle. The contact angle is the angle between a plane perpendicular to the ball bearing axis and a line joining the two points where the ball makes contact with the inner and outer raceways. The contact angle of a ball bearing is determined by its radial play, as well as its inner and outer track curvatures.

The contact angle under load is called the operating contact angle. Deformations of a defined size occur at the contact points between balls and raceways. The deep groove radial bearing is a relatively rigid bearing with a very small contact angle range. Here, a highly accurate bearing alignment is of the utmost importance.

Tilting angle

The tilting angle of a bearing is the relative angle to which the inner and outer rings of a bearing can be tilted. The amount of tilting depends on the radial play and the internal geometries of the bearing.

Tilting of the rings should generally be avoided. Even small tilt angles of 2° or 3° may result in increased bearing noise and reduced life. It is critical to place close attention to machining tolerances of mating assembly components to assure proper bearing alignment.

Calibration of bore and outside diameters

To guarantee a uniform fit of bearings on the shaft and in the housing, it is imperative to control diameter tolerances of the bearings. It is very difficult to control very small tolerances in a production run; therefore, sorting of the rings may be necessary. Only bearings in quality grades P5 and ABEC5 or better can be sorted into groups of 2.5 μ m (.0001 inch) or 1.25 μ m (.0005 inch). The diameters of the shaft and housing must also be accurately measured and sorted to match.

For technical reasons, it is not possible to supply bearings in only one specific tolerance group. This means that grading to X4, only 3 of 4 possible groups can be contained in the shipment lot, i.e. the final group distribution is subject to production machining variances.

The following symbols are used for the classification of graded ball bearings:

Classification of graded bearings

Grading	in groups of 2.5 µm or .0001 inch	in groups of 1.25 µm or .00005 inch	in groups of 1 µm or .00004 inch
Bore d and outside diameter D	X	X4	X5
Bore d only	ХВ	X4B	X5B
Outside diameter D only	XD	X4D	X5D

Example:

SS624 P5 GPR X4B J L001 X4B = bore graded in 4 groups of 1.25 μ m. The outside diameter is not graded.

Key to tolerance groups

					Outside diameter D												
	Tolerance fi	0/-2.5	-2.5/-5	0/-1.25	-1.25/-2.5	-2.5/-3.75	-3.75/-5	0/-1	-1/-2	-2/-3	-3/-4	-4/-5					
		Tolerance fiel	d in	0/-1	-1/-2	0/5	5/-1	-1/-1.5	-1.5/-2	0/4	4/8	8/-1.2	-1.2/-1.6	-1.6/-2		iot ided	
		.0001 inch	Code	1	2	А	В	С	D	Е	F	G	Н	I	gia	aca	
	0/-2.5	0/-1	1	11	12 X										10	ХВ	
	-2.5/-5	-1/-2	2	21	22										20	VD	
	0/-1.25	0/5	А			AA	AB	AC	AD						AO		
	-1.25/-2.5	5/-1	В			ВА	BB (V	BC BC	BD						ВО	Х4В	
	-2.5/-3.75	-1/-1.5	С			CA	CB C	CC	CD						C0	A4D	
ਰ	-3.75/-5	-1.5/-2	D			DA	DB	DC	DD						DO	DO DO	
Bore	0/-1	0/4	Е							EE	EF	EG	EH	El	EO		
ă	-1/-2	4/8	F							FE	FF	FG	FH	FI	FO		
	-2/-3	8/-1.2	G							GE	GF	GG	GH	GI	G0	Х5В	
	-3/-4	-1.2/-1.6	Н							HE	HF	HG	HH	HI	Н0		
	-4/-5	-1.6/-2	- 1							ΙE	IF	IG	IH	П	10		
		not graded		01	02	OA	OB	0C	OD	OE	OF	0G	ОН	OI	n	10	
	not graded)	XD		X	4D				X5D			Syn	nbol		

Different tolerance groups are defined by grading. On the package of each bearing, the relevant group is indicated by means of the following code:

Examples:

Code 21:	Code BC:	Code A0:	Code 02:
Bore- \varnothing $-2.5/-5 \mu \mathrm{m}$	Bore-∅ -1.25/-2.5 µm	Bore-Ø 0/−1.25 μm	Bore-Ø not graded
Outside-Ø $0/-2.5 \mu m$	Outside-Ø -2.5/ -3.75 µm	Outside-Ø not graded	Outside-Ø $-2.5/-5 \mu \text{m}$

Method of group classification:

Bore diameter: The smallest measured diameter defines the class.

Outer diameter: The largest measured diameter defines the class.

Reduction in radial play

Ball bearing radial play can increase or decrease during operation due to external influences.

Increases in radial play can cause an increase in contact angle, which distorts the contact ellipse at the transition between raceway and shoulder. This "excessive edge loading" phenomenon may cause premature bearing failure.

In the worst case a reduction in radial play may cause excessive radial preloading of the bearing causing accelerated bearing wear and premature bearing failure.

The following factors have direct influence on changes in radial play:

- Temperature gradients within the bearing or materials with different temperature coefficients.
- Shaft and housing fits.
- Speed related Centrifugal forces.

Reduction in radial play due to thermal expansion

Bearing clearances are set at an ambient temperature of +20 °C which excludes external loads except measuring loads. Frictional heat generation or temperature differentiation between inner and outer rings can very often cause unfavorable environments. The resulting differential expansions of inner ring and outer ring change the radial play. This factor has to be considered when designing the bearing.

$$\Delta S_{RT} \approx \Delta d_a - \Delta d_i - 2\Delta Dw$$

 ΔS_{RT} : Change in radial play due to thermal expansion [µm]

 Δd_a : Change in outer raceway diameter for temperature T [µm]

 Δd_i : Change in inner raceway diameter for temperature $T[\mu m]$

 ΔDw : Change in ball diameter for temperature T [µm]

The resultant diameter change caused by the temperature difference is calculated. (Reference: ambient temperature +20 °C):

For the outer ring: $\Delta d_{\alpha} = d_{\alpha 0} \cdot \alpha \cdot \Delta T$ For the inner ring: $\Delta d_{i} = d_{i0} \cdot \alpha \cdot \Delta T$ For the balls: $\Delta Dw = Dw \cdot \alpha \cdot \Delta T$

 d_{a0} : Raceway diameter of outer ring at +20 °C [mm] d_{i0} : Raceway diameter of inner ring at +20 °C [mm]

Dw: Ball diameter at +20 °C [mm]

 $\alpha \quad : \mbox{Linear expansion coefficient } [K^{-1}] \mbox{ for }$

100Cr6 ... 11 · 10⁻⁶ X65Cr13 ... 10.5 · 10⁻⁶ X30CrMoN15-1 ... 10.4 · 10⁻⁶ Si₃N₄ ... 3.0 · 10⁻⁶ ZrO₂ ... 10.5 · 10⁻⁶

 ΔT : Temperature difference between temperature T and ambient temperature of +20 °C in [K]

Reduction in radial play due to an interference fit

Interference fits cause a reduction in radial play and so the fitting tolerance should be chosen carefully. The reduction in radial play depends on the effective interference fit and the ring thickness ratio. These ratios can be calculated as follows:

$$\Delta S_{R\ddot{U}} \approx k \cdot \ddot{u}$$

 $\Delta S_{R\ddot{U}}:$ Reduction in radial clearance due to interference fit [µm]

: Factor from the table, while it is presumed that the inner ring is pressed onto a complete shaft or the outer ring is pressed into a stable, non-deformable housing.

ü : Largest interference fit [μm]

If interference fits are used on the shaft and on the housing, the total reduction in radial play is determined by adding both values.

k-factor for inner ring (IR) and outer ring (OR)

netric				į	inch	

Basic symbol	IR	OR									
68/1,5/0003	0.4	0.8	694	0.7	0.8	699	0.7	0.8	1016	0.7	0.8
681	0.6	0.8	604	0.6	0.8	609	0.7	0.8	1191	0.6	0.8
691	0.5	0.8	624	0.6	0.8	629	0.6	0.8	1397	0.6	0.8
68/1,5/0001	0.5	0.8	634*	0.5	0.8	6800	0.8	0.9	5/64	0.6	0.8
68/1,5	0.8	0.8	675	0.9	0.8	6900	0.8	0.9	2380	0.8	0.9
69/1,5	0.5	0.8	675/004	0.9	0.8	6000	0.7	0.8	3/32	0.5	0.9
682	0.7	0.8	694/1002	0.9	0.8	6901	0.8	0.9	3175/0002	0.6	0.9
682/005	0.7	0.8	685	0.8	0.8	6001	0.7	0.9	3175	0.8	0.9
692/003	0.6	0.8	685/003	0.8	0.8	6001/003	0.7	0.9	1/8A	0.7	0.9
692	0.6	0.8	695	0.7	0.8	6802	0.9	0.9	3175/6	0.8	0.6
693/0001	0.5	0.9	605	0.6	0.8	6902	0.8	0.9	1/8A/6	0.7	0.7
67/2,35	0.8	0.8	625	0.6	0.8	6002	0.8	0.9	1/8B	0.6	0.9
68/2,35	0.8	0.9	635	0.5	0.8	6803	0.9	0.9	3175/55	0.8	0.5
67/2,5	0.8	0.9	676/003	0.9	0.9	6903	0.8	0.9	3175/6	0.8	0.6
68/2,5	0.7	0.9	695/1202	0.8	0.9	6003	0.8	0.9	3175/8	0.8	0.4
69/2,5	0.6	0.9	686	0.8	0.9	6804	0.9	0.9	1/8B/083	0.6	0.6
683/0001	0.6	0.9	696	0.7	0.8	6904	0.8	0.9	3967	0.7	0.9
60/2,5	0.6	0.8	625/0002	0.7	0.8	6805	0.9	0.9	4763A	0.9	0.9
673	0.8	0.9	626	0.6	0.8				4763B	0.8	0.9
683	0.8	0.9	688A/1322	0.8	0.9				4763A/082	0.9	0.6
683/003	0.8	0.9	687	0.8	0.9				4763B/083	0.8	0.7
693/003	0.7	0.9	697	0.7	0.8				3/16	0.7	0.9
693	0.7	0.9	607	0.7	0.8				6350A	0.9	0.9
683/8	0.8	0.8	627	0.6	0.8				6350B	0.8	0.9
623	0.6	0.8	688A/142	0.9	0.8				1/4A	0.7	0.8
623/13	0.6	0.6	688	0.8	0.9				1/4	0.6	0.8
633	0.5	0.8	688/003	0.8	0.9				7938	0.9	0.9
674	0.9	0.9	698	0.7	0.8				3/8	0.7	0,8
684	0.8	0.9	608	0.7	0.8				12700B	0.9	0.9
684/103	0.8	0.8	689	0.8	0.9				1/2	0.7	0.8
684/10	0.8	0.8	689/003	0.8	0.9				1/2/001	0.7	0.8

Subject to change.

^{*} For a detailed example, refer to page 22.

Reduction in radial play

Reduction in radial play due to centrifugal forces

At very high shaft speeds or inner ring rotation, the centrifugal forces of the rotating parts increase. The load on the outer ring and the balls also increases and the inner ring expands. The expansion of the inner ring changes the fit of the shaft and bearing and the bearing may begin to slip on the shaft. In this situation, a tighter fit must be selected.

These types of deformations depend on the bearing size, retainer, balls, materials used, and inner geometry of the bearing.

Please contact our sales engineers to find out more about the reduction in radial play due to centrifugal forces.

Example:

The ball bearing SS634-2Z GPR I(d = 4 mm, D = $16 \, \text{mm}$, Dw = $2.50 \, \text{mm}$, material of rings and balls: X65Cr13) is to run in an application at 35,000 1/min. During the operating phase, the temperature at the inner ring is +60 °C and at the outer ring +30 °C. The ball bearing is mounted on the shaft with a press fit j5 (+3/-2) and in the housing with a tight fit K5 (+2/-6).

Change in radial clearance due to thermal expansion:

Outer ring:

$$d_{a0} \approx (d+D)/2 + Dw = (4+16) \text{ mm}/2 + 2.50 \text{ mm} = 12.50 \text{ mm}$$

 $\Delta d_a \approx d_{a0} \cdot \alpha \cdot \Delta T = 12.500 \text{ m} \cdot 10.5 \cdot 10^{-6}$
 $1/K \cdot 10 \text{ K} = 1.31 \text{ µm}$

Inner ring:

$$d_{i0} \approx (d+D)/2 - Dw = (4+16) \text{ mm}/2 - 2.50 \text{ mm} = 7.50 \text{ mm}$$

$$\Delta d_i \approx d_{i0} \cdot \alpha \cdot \Delta T = 7.50 \text{ mm} \cdot 10.5 \cdot 10^{-6} \text{ 1/K}$$

 $\cdot 40 \text{ K} = 3.15 \text{ } \mu\text{m}$

Ball:

$$Dw = 2.50 \, \text{mm}$$

Change in radial clearance due to thermal expansion:

$$\Delta S_{RT} \approx \Delta d_a - d_{i0} - 2\Delta Dw$$

 $\Delta S_{RT} \approx (1.31 - 3.15 - 2 \cdot 0.66) \, \mu m = -3.16 \, \mu m$

The radial clearance is reduced due to the temperature difference between inner ring and outer ring by 3.16 µm.

Change in radial clearance due to interference fi t:

Outer ring:

Outside diameter: $0/-8 \, \mu m$ Housing diameter: $+2/-6 \, \mu m$ $\rightarrow \ddot{U} = 6 \mu m$

 $\Delta S_{R\ddot{U}_{G}} \approx k \cdot \ddot{U}$

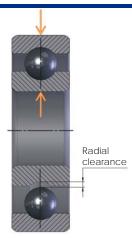
 $\Delta S_{R\ddot{U}_{Q}} \approx 0.8 \cdot 6 \, \mu \text{m} = 4.8 \, \mu \text{m}$

Inner ring:

Bore: 0/-8 µm Shaft: $+3/-2 \mu m$ $\rightarrow \ddot{U} = 11 \, \mu \text{m}$ $\Delta S_{pij} \approx k \cdot \ddot{u}$ $\Delta S_{\text{Pil}} \approx 0.5 \cdot 11 \, \mu\text{m} = 5.5 \, \mu\text{m}$

The raidal clearance changes due to the interference fit by $4.8 \, \mu m + 5.5 \, \mu m = 10.3 \, \mu m$

Total change of radial clearance due to thermal expansion and interference fit:


$$\Delta S_R = \Delta S_{RT} + \Delta S_{R\ddot{U}} [\mu m]$$

$$\Delta S_P = 3.16 \mu m + 10.3 \mu m = 13.46 \mu m$$

This total reduction in radial clearance must be considered when selecting the radial clearance of the bearing.

Radial play classification

Radial play for deep groove radial bearing

d	max 6 mm
C2	0 to 6 µm
CN	4 to 11 µm
C3	10 to 20 µm
C4	14 to 20 µm
C5	18 to 28 µm

d more than 24 to 30 mm d more than 6 to 10 mm C2 0 to 6 µm C2 1 to 11 µm CN 4 to 11 µm CN5 to 20 µm C3 10 to 20 µm C3 13 to 28 µm C4 14 to 29 µm C4 23 to 41 µm 20 to 37 µm $30 \text{ to } 53 \text{ } \mu\text{m}$

d m	ore than 10 to 18 mm	d mo	re than 30 to 40 mn
C2	0 to 9 µm	C2	1 to 11 µm
CN	3 to 18 µm	CN	6 to 20 µm
C3	11 to 25 µm	C3	15 to 33 µm
C4	18 to 33 µm	C4	28 to 46 µm
C5	25 to 45 µm	C5	40 to 64 µm

d m	ore than 18 to 24 mm	d more	than 40 to 50 mm	
C2	O to 10 µm	C2	1 to 11 µm	
CN	5 to 20 µm	CN	6 to 23 µm	
C3	13 to 28 µm	C3	18 to 36 µm	
C4	20 to 36 µm	C4	30 to 51 µm	
C5	28 to 48 µm	C5	45 to 73 µm	

Deviating radial clearance data inch system

The standard radial play is not indicated in the ball bearing numbering system.

Deviating radial clearance data metric system

C1/5	1 to 5 μm	KO2	0" to .0002"	
C4/8	4 to 8 µm	K13	.0001" to $.0003"$	
C7/11	7 to 11 µm	K24	.0002" to $.0004"$	
C10/15	10 to 15 μm	K35	.0003" to $.0005"$	
		K46	.0004" to .0006"	
		K58	.0005" to .0008"	

22 I 1 23 www.grwbearing.com

Functional tests

There are different functional tests that can be performed by GRW. As a standard, 100% of our ball bearings are noise tested. Besides this standard testing, the following tests are available: axial vibration tests, torque test and preload measurement.

These tests ensure the uniformity of the production run and compliance with customer requirements. All functional tests carried out by GRW take place in a class R 10,000 cleanroom (ISO 14644-1, class 7).

The functional test method is always selected to simulate the intended use of the bearing.

Noise test GPR

In the GRW numbering system GPR designates 100% noise testing. Using highly sensitive noise testing equipment, the amplitude of the vibrations generated by the miniature bearings is measured at specified speeds and frequencies. This method detects imperfections, such as ball or raceway defects and isolates their root cause.

This noise test is carried out in a class R10,000 cleanroom in accordance with ISO 14644-1, class 7. A standard reference oil is used to eliminate the variable effects of different lubricants

Axial vibration test GPA

GPA stands for noise testing in the axial direction. Similar to the GPR test, the axial vibrations measured by the GPA vibration meter identify the shape and surface properties of raceways and balls in the bearings.

GPA testing measures vibration noise in four distinct frequency ranges as compared to two frequency ranges for the GPR test. The amount of movement or 'peak to peak displacement' value is also recorded. The cumulative total of these distinct measurements provides a direct understanding of the ball bearing's running behavior.

As with the GPR test, standard reference oil is used to eliminate the variable effects of different lubricants.

The GPA test is offered at an additional charge. If you require any further information, please contact your GRW sales representative.

Torque test

GRW uses different methods to measure starting and dynamic torque. The Asch testing device due to MIL-STD-206 provides very exact and reliable starting torque values. During this test the outer ring is driven and the inner ring is loaded relative to each bearing size. The standard axial loading of the inner ring is 75 g for ball bearings with an outer diameter of up to 10 mm. Ball bearings with a larger outer diameter (> 10 mm) are loaded with 400 g.

Since there is no universally accepted standard for torque measurement, the torques of identical bearings can only be compared if they have been measured under the same measuring conditions with the same measuring devices.

Table "maximum starting torque in μ Nm" shows reference values for the maximum starting torque. These values apply for instrument ball bearings without seals, P5 or ABEC5 or better, which are lubricated with instrument oil having a low viscosity ≤ 14 mm²/s at +40 °C. The values can be 10 to 40 times higher for ball bearings with grease lubrication.

Running or dynamic torque is the force required to keep a bearing in rotation. A special dynamic torque tester developed by GRW for this very purpose is available on request to measure the running torque at higher speeds.

Maximum starting torque in µNm

Basic symbol	Torque in [µNm]	Load in [g]	Basic symbol	Torque in [µNm]	Load in [g]	Basic symbol	Torque in [µNm]	Load in [g]
681	15	75	695	69	400	1016	15	<i>7</i> 5
691	15	75	605	69	400	1191	15	75
68/1,5	15	75	625	69	400	1397	15	75
69/1,5	15	75	635	76	400	5/64	15	<i>7</i> 5
682	15	75	686	69	400	2380	15	75
692	15	75	696	69	400	3/32	15	75
67/2,35	15	75	626	76	400	3175	15	75
68/2,35	15	75	687	69	400	1/8A	15	75
68/2,5	15	75	697	76	400	1/8B	16	75
69/2,5	15	75	607	76	400	3967	15	75
60/2,5	16	75	627	80	400	4763A	15	75
673	16	75	688A	52	400	4763B	16	75
683	16	75	688	76	400	3/16	52	400
693	16	75	698	76	400	6350A	15	75
623	16	75	608	80	400	6350B	52	400
674	16	75	689	76	400	1/4A	60	400
684	16	75	699	80	400	1/4	70	400
694	65	400	609	80	400	7938	52	400
604	65	400	629	100	400	3/8	95	400
624	69	400	6800	80	400			
634	69	400	6900	95	400	_		
675	65	400	6000	100	400			
685	65	400	_			_		

Conversion table

	1 μNm =	1 cmp =	1 oz.in. =	1 cNcm =
μNm	1	100	7200	100
стр	0.01	1	72	1
oz.in.	0.000139	0.0139	1	0.0139
cNcm	0.01	1	72	1

Assembly of low-torque ball bearings

Shaft and housing fits and tolerances for low-torque bearings are particularly important. Shaft and housing tolerances need to be selected so that they result in a sliding fit. Please refer to the chapters "Fitting Tolerances" and "Reduction in radial play".

Even a small misalignment of the inner or outer ring can result in an increased bearing torque. Particular attention must be given to the exact alignment between shaft and housing bore, as well as to the parallelism of the mating faces.

Extreme cleanliness of parts and assembly area is essential to produce a perfect low-torque bearing. Even the tiniest contaminations of the ball bearings can cause torque peaks, which may be many times higher than the average torque level.

Preloading test

Another testing device specifically developed by GRW measures and records the preloading of duplexed bearings (following the "broken curve" method). This type of measurement is available on request.

Tolerance and Runout Tables – inner ring

(International Organization for Standardization) and ABEC bearings according to ABEC quality standards ABEC 1 to standards (Annular Bearing Engineering Committee). For ABEC9 (ABEC9 = highest tolerance). metric size bearings, tolerances comply with ISO quality

GRW bearings conform to the applicable ISO PO to P2 (P2 = highest tolerance) and for inch size

GRW manufactures miniature ball bearings according to Including tolerances of mating parts, such as shafts and the highest quality standards for both inch and metric sizes. housings, to create a bearing friendly environment. GRW's sales engineers will be pleased to support you selecting the suitable quality for your application.

Definition:		Diameter	d [mm]		PO [μm]	P (P5 [µm]	P /		P2 [μm]		P5A (4) [µm]	P4A		P4S (5)		AB [.000		ABI			BEC5 Ol inch]	AB	EC7 1 inch]		EC9 1 inch]		C3P	ABEC [.0001		ABEC 2		ABEC9P [.0001 inch]		EC5T (6)
		series					min. max										n.	max.	min.	max.			min.	max.			min.	max.		max.		max.		max. min.		. min.
single plane mean				18 0	-8 -10		-7 0		0	-4		-2.5 0		0	-4 0		4	0	-3	0	-3		-2	0	-1.5		-]	0	-2	0	_	0	_	0 -1	0	-2
bore diameter deviation	∆dmp			30 0 50 0	-10		-8 0 -10 0		0	-5 -6		-2.5 0 -2.5	-0	0	-5 O) -	6	0	-4 -4.5	0	-3 -4	0	-2.5 -3	0	-2 -2.5	0	-1 -1	0	-2	0	-2	0	-2	0 -1	0	-2 -3
				18 10		9	5		4		2.5	3		2.5	2	1.5														1	$\overline{}$	1		.5	+	
		7/8/9		30 13		10	6		5		2.5	3		2.5		5														1		1		.5		
				50 15		13	8		6		2.5			0.5		.5														,						
Bore diameter variation in a single radial plane	Vdsp			18 8 30 10		8	4		3		2.5 2.5	3		2.5 2.5		5 5														1		1		.5		
(out of roundness)	vusp			50 12		10	6		5		2.5			2.5		5														'		ı		.5		
				18 6		5	4		3		2.5	3		2.5		5														1		1		.5	+	
		2/3	18	30 8		6	5		4	:	2.5	3		2.5	2	.5														1		1		.5		
				50 9		8	6		5		2.5					5																				
Mean bore diameter				18 6		5	3		2		1.5	3		2		.5]]		.5		
variation (conicity)	Vdmp			30 8 50 9		٥ و	3		2.5		1.5	3		2.5	1	.5																I		.5		
				2.5 0	-40	0	-40 0	-40	0	-40)	-40 0	-25	0	-25 0	-10	0																			
			0.6	10														0	-50	0	-50	0	-16	0	-16	0	-16	0	-50	0	-10	0	-10	0 -10)	
Variation of a single inner ring width from	$\Delta Bs^{(1)}$		2.5	10 0	-120	0 -	-120 0	-40	0	-40	С	-40 0	-25	0	-25 0	-10	0																			
nominal dimension	Δυ3			18 0	-120		-120 0	-80		-80		-80 0	-25		-25 0			0	-50	0	-50	0	-32	0	-32	0	-32	0	-50					0 -10		-10
				30 0	-120		-120 0	-120		-120		120 0	-25	0	-25 0			0	-50	0	-50	0	-50	0	-50	0	-50	0	-50	0	-10	0	-10	0 -10		-10 -50
				50 0 2.5 12	-120	12	-120 O .5	-120	2.5	-120	3 - 1.5	120			0	.5	0	0	-50	0	-50	0	-50	0	-50	0	-50								0	-50
			0.6	10	•	12			2.5		1.5				'	.0		6		6		2		1		.5		,	1/	2		1		.5		
Variation in the width	\ /D		2.5	10 15		15	5		2.5		1.5	5		2.5	1	.5															1000					
of the inner ring	VBs			18 20		20	5		2.5		1.5	5		2.5	1	.5		8		8		2		1		.5				2		1		.5	2	
				30 20		20	5		2.5		1.5	5		2.5		.5		8		8		2		1		.5	14			2		1		.5	2	
				50 20 2.5 10		20	5		2.5		1.5	3	5	2.5		.5		8		2.5		1.5		1		.5		2	3	1.5		1		5	2	A A
Radial runout of the				10 10		6	4		2.5		1.5	3.		2.5		.5		3		2.5		1.5		1		.5		2		1.5				5	ZXX	X
inner ring of the assembled bearing	Kia			18 10		7	4		2.5		1.5	3.		2.5		.5		4		3		1.5		1		.5/		2		1.5	AEK	1/3	X	.5	2	XX
(dynamic imbalance)				30 13		8	4		3		2.5	3.	5	3		5		5		3		1.5		1)		3		1.5	1	1.5	1	NAME	2	
				50 15)	10	5		4		2.5					5		6		4		2		1.5		/1		7			AL ST	THE	Sp	Sta	3	
Face runout with bore				18			7		3		1.5	7		3		.5						3]		.5				3		THE	2	.5	3	
(lateral runout)	Sd			30 50			8		4		1.5 1.5	8		4		.5 .5						ک ع		1.5 1.5		.5 .5				3.4	H	1.5		.Σ	3	
A 11 11 · ·				18			7		3		1.5	7		3		.5						3		1.5	A	.5	1			3	177			.5	3	
Assembled bearing inner ring face runout with	Sia			30			8		4		2.5	8		4		.5						3		1.5					/	3	TA	1.5		.5	3	
raceway (axial runout)			30	50			8		4		2.5				2	1.5						3		1.5		1			人人	1	TE				3	

Subject to change.

26 I

(5) For spindle bearings only
(6) Nominal value for bores of 9 mm and up

⁽¹⁾ Tolerance for matched bearings is 0/-200 µm

⁽²⁾ Applicable before assembly of the bearing and after removal of the inner and/ or outer circlips

⁽³⁾ For flanged bearings inboard side of the flange

^[4] For deep groove radial bearings only

Tolerance and Runout Tables – outer ring

Definition:		Diameter	D	PO	Pé		P5	P4	P2	P5A (4)			P4S (5)		EC1	ABEC		ABEC		ABE		ABEC		ABEC3		ABEC5P		SEC7P	ABEC9		EC5T (6)
		series	[mm] above to	[µm] max. min	[µm 1. max.		um] min. mo	[µm] ax. min.	[µm] max. min.	[µm] max. mir	[µm n. max.		[µm] nax. min	max.	l inch] min.	[.0001 max.	min.	[.0001 i max.	min.	[.0001 max.	min.	[.0001 i max.		.0001 ir nax.		[.0001 inch] max. min		01 inch] min.	[.0001 ind		O1 inch] min.
Single plane mean outside diameter deviation	ΔDmp		18 30	0 -1	3 0 9 0 1 0 3 0	-7 0 -8 0 -9 0 -11 0	-5 0 -6 0 -7 0 -9 0	-5 -6	0 -4	. 0 -	5 0 6 0 7 0	-4 (-5 (-6 (0 0 0	-3 -4 -5 -5	0 0 0	-3 -3 -4 -4.5	0 0 0	-2 -3	0 0 0	-2 -2 -2.5 -3	0 -	-1 (1.5 (1.5 (1.5)	-3	0 -2 0 -2 0 -2	0	-2 -2 -2	0 0 -1 0 -1	-1 .5 0 .5 0	-2 -4 -4
		7/8/9	2.5 18 18 30	10 12 14	9 10 11 14	5 6 7	4 5 6	,	2.5 4 4	3 3 3	2.5 2.5 2.5	2	2.5 1 1		J	O	4.5	U	0.0		J	U	1.5			1	1 1		.5 .8 .8		4
Outside diameter variation in a single adial plane out of roundness)	VDsp ⁽²⁾	0	2.5 18 18 30	8 9 11	7 8 9	4 5 5 7	3 4 5 5		2.5 4 4	3 3 3	2.5 2.5 2.5	2	± 2.5 1 1													1	1 1 1		.5 .8 .8		
		2/3	2.5 18 18 30	6 7 8	5 6 7 8	4 5 5 7	3 4 5 5		2.5 4 4 4	3 3 3	2.5 2.5 2.5	2	2.5 1 1													1 1 1	1 1		.5 .8 .8		
Mean outside diameter variation conicity)	VDmp ⁽²⁾		18 30	6 7 8 10	5 6 7 8	3 3 4 5	2 2. 3 3.	.5	1.5 2 2 2	3 3 4	2 2.5 3	2	1.5 2 2 2]]]	1 1 1		.5 .8 .8		
Variation of a single outer ring width from nominal dimension	$\Delta Cs^{(1)}$		2.5 18 18 30 30 50 50 80	ident	ical with	Bs for inne	er ring of th	ne same b	pearing		5 O 5 O	-25 (-25 () -120) -120) -150	0 0 0	-50 -50 -60	0 0 0	-50 -50 -60	0 0 0		0 0 0	-50 -50 -60	0	-50 (-50 (-60			0 -1C 0 -1C		-10 -10		0 0 0 0	-10 -10 -50
Variation in width	VCs		2.5 18 18 30 30 50 50 80	identi	cal with \	/Bs for inne	er ring of t	he same	bearing	5 5	2.5 2.5		l.5 l.5 l.5	8 8 10		8 8 10		2 2 2.5		1 1 1		.5 .5 .5				2	1		.5 .5	2 2 2	
Radial runout of outer ring of assambled bearing (dynamic imbalance)	Kea		18 30	15 15 20 25	8 9 10 13	5 6 7 8	3 4 5 5		1.5 2.5 2.5 4	5 6 7	3 4 5	2	1.5 2.5 2.5 1	6 6 8 10		4 4 4 5		2 2 3 3		1.5 1.5 2 2		.5 1 1 1.5	2	1 1 1		2 2 2	1.5 1.5 2		.5 1 1	2 3 3	
Variation of the outside surface generatrix inclination with face ⁽³⁾ lateral rounout)	SD		2.5 80			8	4		1.5	8	4	1	1.5					3		1.5		.5		/		3	1.5	5.55	.5	3	
Assembled bearing outer ring face flange back race rounout with raceway axial runout)	Sea		2.5 18 18 30 30 50 50 80			8 8 8 10	5 5 5 5		1.5 2.5 2.5 4	8 8 8	5 5 5		1.5 2.5 2.5 1					3 3 3 5		2 2 2 2		.5 1 1 1.5				3 3 3	2 2 2		.5 1 1	3 3 4	
Assembled bearing outer ring face flange back face rounout of assembled bearing	Sea1		2.5 18 18 30 30 50 50 80			11 11 11	7 7 7 7		3 4 4	10 10 10	7 7 7															3 3 3	3 3 3				
Variation of a single outside diameter of outer ring Flange diameter is used for positioning	ΔFD		2.5 10 10 18 18 30 30 50	0 -43 0 -52 0 -62	3 0 2 0 2 0	-36 0 -43 0 -52 0 -62 0 -74 0	-36 0 -43 0 -52 0 -62 0 -74 0	-43 -52 -62	0 -43 0 -52 0 -62	0 -2 0 -2	5 O 5 O	-25 -25 -25 -25												50 ·	-20 -20	0 -10 0 -10 0 -10 0 -10	0	-10 -10 -10 -10		N. J. S.	
Variation of a single width outer ring flange from nominal dimension	ΔFB		2.5 10 10 18 18 30 30 50	0 -120 0 -120 0 -120 0 -120	0 0 -	120 0 120 0 120 0 120 0	-40 0 -80 0 -120 0 -120 0	-40 -80 -120 -120	0 -40 0 -80 0 -120	0 -5	0 0	-40 -50 -50 -50) .	-20 -20	0 -20 0 -20 0 -20 0 -20	0	-20 -20 -20 -20			

www.grwbearing.com

(5) For spindle bearings only
(6) Nominal value for bores of 9 mm and up

Subject to change.

[1] Tolerance for matched bearings is 0/-200 µm

⁽²⁾ Applicable before assembly of the bearing and after removal of the inner and/ or outer circlips

⁽³⁾ For flanged bearings inboard side of the flange ⁽⁴⁾ For deep groove radial bearings only

GRW- designation	Main dim [m	nensions in	Bea	ring without clo	osure in [mm] [[inch]	Вес	aring with closi	ure in [mm] [i	nch]	Chamfer in [mm]		g dimensions DIN 5418		ngs acc. to) ⁽²⁾ (max)	Closure	options (3)	Max. limiting sp	peed ⁽⁵⁾ [min ⁻¹]
acognation		ch]	Width without closure	Width with extended inner ring without closure	Flange di without	mensions closure	Width with closure	Width with extended inner ring with closure	Flange di with c	mensions losure	[inch]	[1	mm] inch] Housing diameter	<i>3</i> 11 1 1 0 0	, (max)				
Basic symbol	d	D	В	В	Flange diameter FD	Flange width FB	B ₂	B ₃	Flange diameter FD ₁	Flange width FB ₁	Γ _{s min} (1)	d _{a min}	D _{a max}	C _r [N]	C _{Or} [N]	Shield ⁽⁴⁾	Seal ⁽⁴⁾	without closure or with shield	with seal
68/1,5/0003	0.80 .0315	4.00 .1575	2.00 .0787	-	5.00	0.60 .0236	2.00 .0787	-	5.00	0.60 .0236	0.05 .002	1.20 .047	3.60	163	44	Х	-	138000	-
681	1.00	3.00	1.00	-	-	-	2.00 .0787	-	-	-	0.05 .002	1.40 .055	2.60	82	22	Х	-	150000	-
681/003	1.00	3.00	2.00	-	-	-	2.00 .0787	-	-	-	0.05	1.40	2.60	52	21	Х	-	170000	-
691	1.00	4.00	1.60	-	-	-	2.30	-	-	-	0.10 .004	1.60	3.40	160	43	_	-	126000	-
68/1,5/0001	1.00	4.00 .1575	-	-	-	-	2.00 .0787	-	5.00	0.60 .0236	0.05	1.40	3.60	163	44	Χ	-	130000	-
68/1,5/0011	1.00	4.00	2.00 .0787	-	5.00	0.60 .0236	2.00 .0787	-	-	-	0.05	1.40	3.60	163	44	Х	-	130000	-
68/1,5	1.50	4.00 .1575	1.20 .0472	2.00 .0787	5.00	0.40 .01 <i>57</i>	2.00 .0787	-	5.00	0.60 .0236	0.05	1.90	3.60	163	44	Х	-	153000	-
	.0071		.0 // 2	.07 07	,	.0107	.07 07		,0,	.0200	.002	.0, 0	2						
69/1,5 (4)	1.50	5.00	2.00 .0787	2.80	6.50 .2559	0.60 .0236	2.60 .1024	3.40	6.50 .2559	0.80 .0315	0.15 .006	2.30	4.20 .165	192	59	Х	-	109000	-
69/1,5/002	1.50	5.00	-	-	-	-	2.00 .0787	-	6.50 .2559	0.60	0.15	2.30	4.20	192	59	X	-	93000	A This
60/1,5	1.50	6.00 .2362	2.50 .0984	-	7.50 .2953	0.60 .0236	3.00	-	7.50 .2953	0.80 .0315	0.15 .006	2.30	5.20 .205	330	98	X	_	90000	-
672	2.00	4.00	1.20 .0472	-	-	-	2.00 .0787	-	-	-	0.05	2.40 .094	3.60	124	40	X	-	104000	
682	2.00 .0787	5.00	1.50 .0591	2.30 .0906	6.10 .2402	0.50 .0197	2.30 .0906	3.10	6.10 .2402	0.60 .0236	0.08 .003	2.50 .098	4.50	192	59	X	X	116000	71000
682/003	2.00	5.00	-	-	-	-	2.50 .0984	-	6.20	0.60 .0236	0.10 .004	2.60	4.40	169	50	X	7/3	100000	MAXIV.
682/005	2.00 .0787	5.00	2.60	-	6.50 .2559	0.80 .0315	2.60	-	6.50 .2559	0.80 .0315	0.08 .003	2.50	4.50	192	59	Х	-	105000	-
692/003	2.00	6.00 .2362	2.00	-	-	-	-	-	-	-	0.15	2.80	5.20 .205	286	90	- 4		91000	-
692	2.00 .0787	6.00 .2362	2.30 .0906	3.10 .1220	7.50 .2953	0.60 .0236	2.30 .0906	3.10 .122	7.50 .2953	0.60 .0236	0.15 .006	2.80	5.20 .205	286	90	X	X	91000	65000

⁽¹⁾ $r_{s,min}$ = minimum single bearing chamfer or maximum permissible shaft or housing fillet radius (2) Other load ratings are possible with different ball complements and non standard retainers (3) Different shields and seals are available

⁽⁴⁾ Bearings also available with 1 or 2 shields/seals

⁽⁵⁾ Limiting speed also depends on seal, material and the respective ball complement

[•] Bearings without shields or retainers are also available with recesses.

Please discuss your desired design in terms of flange, extended inner ring width, shield, lubrication, and material with our Technical Application Consultants to check availability.

[•] Subject to change.

Almost all bearing types can also be enhanced with GRW XTRA. Detailed information you can find on page 79 and following.

GRW- designation		nensions in	Bea	ring without clo	sure in [mm] [inch]	Вес	aring with clos	ure in [mm] [i	inch]	Chamfer in [mm]		g dimensions DIN 5418		igs acc. to	Closure	options ⁽³⁾	Max. limiting sp	peed (5) [min ⁻¹]
oo.gao		ch]	Width without closure	Width with extended inner ring without closure	Flange di without		Width with closure	Width with extended inner ring with closure	with c	ı	[inch]	[r	mm] Housing diameter	5.11.10	1		ı		ı
Basic symbol	d	D	В	В ₁	Flange diameter FD	Flange width FB	B ₂	B ₃	Flange diameter FD ₁	Flange width FB ₁	r _{s min} (1)	d _{a min}	D _{a max}	C _r [N]	C _{Or} [N]	Shield ⁽⁴⁾	Seal ⁽⁴⁾	without closure or with shield	with seal
692/005	2.00 .0787	6.00 .2362	2.50 .0984	-	7.20 .2835	0.60 .0236	2.50 .0984	-	-	-	0.15 .006	2.80	5.20 .205	330	99	Х	-	90000	-
692/004	2.00	6.00	3.00	_	7.50	0.80	3.00	_	7.50	0.80	0.15	2.80	5.20	330	99	Χ	_	95000	_
0,2,00.	.0787	.2362	.1181		.2953	.0315	.1181		.2953	.0315	.006	.110	.205		, ,	^		,,,,,,	
683/0003	2.00	7.00	3.00	-	8.20	0.60	3.00	-	8.20	0.60	0.15	2.80	6.20	386	129	Х	-	75000	-
	.0787	.2756	.1181		.3228	.0236	.1181		.3228	.0236	.006	.110	.244						
693/0001	2.00	8.00	4.00	-	9.50	0.90	4.00	-	9.50	0.90	0.15	2.80	7.20	644	215	Х	-	67000	-
(1 7 10 6 F W)	.0787	.3150	.1575	2.00	.3740	.0354	.1575		.3740	.0354	.006	.150	.283	100	50			10000	
67/2,35 (6)	2.35 .0925	5.00	1.50 .0591	2.30 .0906	6.10 .2402	0.50 .0197	2.30	-	6.10 .2402	0.60 .0236	0.08 .003	2.50 .098	4.50	192	59	X	_	120000	_
68/2,35 (6)	2.35	5.50	2.00	.0900	.2402	.0197	.0900	_	.2402	.0230	0.08	2.90	5.00	286	90	_	_	91000	_
00/2,00	.0925	.2165	.0787								.003	.114	.197	200	70			71000	
67/2,5	2.50	5.00	1.50	-	-	-	-	-	-	-	0.08	2.90	4.60	192	59	-	_	93000	-
	.0984	.1969	.0591								.003	.114	.181						
68/2,5	2.50	6.00	1.80	2.60	7.10	0.50	2.60	3.40	7.10	0.80	0.08	3.00	5.50	286	90	Х	Χ	101000	61000
	.0984	.2362	.0709	.1024	.2795	.0197	.1024	.1303	.2795	.0315	.003	.118	.217						
69/2,5/002	2.50	7.00	-	-	-	-	2.50	-	-	-	0.10	3.10	6.40	177	58	Х	-	75000	-
69/2,5	.0984 2.50	.2756 7.00	2.50	_	8.50	0.70	.0984 3.50	_	8.50	0.90	.004 0.15	.122 3.30	.252 6.30	432	149	X	X	87000	53000
09/2,3	.0984	.2756	.0984	_	.3346	.0276	.1307	_	.3346	.0354	.006	.130	.248	432	149	^	^	6/000	33000
683/0001	2.50	7.00	2.00	_	8.10	0.50	3.00	_	8.10	0.80	0.10	3.60	6.40	432	149	X		88000	/
000, 000.	.0984	.2756	.0787		.3189	.0197	.1181		.3189	.0315	.004	.142	.252	.02				00000	AVAILA
60/2,5	2.50	8.00	2.80	3.60	9.50	0.70	2,80	3.60	9.50	0.70	0.15	3.30	7.20	432	149	X	X	81000	53000
	.0984	.3150	.1102	.1417	.3740	.0276	.1102	.1417	.3740	.0276	.006	.130	.283						
60/2,5/004	2.50	8.00	4.00	-	9.50	0.90	4.00	-	9.50	0.90	0.15	3.30	7.20	552	177	X	1	71000	77.74
170	.0984	.3150	.1575		.3740	.0354	.1575		.3740	.0354	.006	.130	.283			#			
673	3.00	6,00	2.00	-	7.20	0.60	2.00	-	-	-	0.08	3.60	5.40	208	74	X	_	81000	_
673 /002	.1181	.2362	.0787	_	.2835	.0236	.0787	_	7 20	0.40	.003	.142	.213	200	74 A	Χ	72.121 /2/0	80000	XX X (X (X)
673/003	3.00	6.00 .2362	-	_	-	-	2.50 .0984	-	7.20 .2835	0.60 .0236	0.10 .004	3.60 .142	5.40 .213	208	/4	X	7/3	00000	MAXIN
683/63	3.00	6,987	_	_	_	_	3.00	_	.2000	.0230	0.10	3.60	6.40	432	149	X	X	80000	50000
200, 00	.1181	.2751					.1181				.004	.142	.252	102	1 17	, ,	, ,	33000	20000
683	3.00	7.00	2.00	2.80	8.10	0.50	3.00	3.80	8.10	0.80	0.10	3.60	6.40	432	149	X	XXX	90000	53000
	.1181	.2756	.0787	.1102	.3189	.0197	.1181	.1496	.3189	.0315	.004	.142	.252			X	TITA		
683/ 0 8	3.00	8.00	3.00	-	-	-	3.00	3.80	-	-	0.10	3.60	6.40	432	149	Х	Χ	95000	55000
	.1181	.3150	.1181				.1181	.1496			.004	.142	.252						

⁽¹⁾ $r_{s,min}$ = minimum single bearing chamfer or maximum permissible shaft or housing fillet radius (2) Other load ratings are possible with different ball complements and non standard retainers (3) Different shields and seals are available

⁽⁴⁾ Bearings also available with 1 or 2 shields/seals

 $^{^{(5)}}$ Limiting speed also depends on seal, material and the respective ball complement $^{(6)}$ Tolerance of bore +12µm to 3µm

[•] Bearings without shields or retainers are also available with recesses.

Please discuss your desired design in terms of flange, extended inner ring width, shield, lubrication, and material with our Technical Application Consultants to check availability.

Subject to change.

Almost all bearing types can also be enhanced with GRW XTRA. Detailed information you can find on page 79 and following.

1 0					0		_												
GRW- designation	[m	ensions in	Вес	uring without clo	osure in [mm] [[inch]	Вес	aring with clos	ure in [mm] [i	inch]	Chamfer in [mm]		dimensions DIN 5418	Load ratin DIN ISC	igs acc. to ⁽²⁾ (max)	Closure	options ⁽³⁾	Max. limiting sp	eed ⁽⁵⁾ [min ⁻¹]
	[in	ch]	Width without	Width with extended		imensions closure	Width with closure	Width with extended	Flange di	imensions closure	[inch]		nm] nch]						
			closure	inner ring	WIIIIOUI	ciosure	Closule	inner ring	Willi C	liosure									
				without closure				with closure				Shaft diameter	Housing diameter						
					Flange	Flange			Flange	Flange				_				without closure	
Basic symbol	d	D	В	B ₁	diameter FD	width FB	B ₂	B ₃	diameter FD ₁	width FB ₁	r _{s min} (1)	d _{a min}	D _{a max}	C _r [N]	C _{0r} [N]	Shield ⁽⁴⁾	Seal ⁽⁴⁾	or with shield	with seal
683/003	3.00	7.00	2.50	-	-	-	2.50	-	-	-	0.10	3.60	6.40	432	149	X	_	93000	_
693/003	.1181 3.00	.2756 8.00	.0984 2.50	_			.0984				.004	.142 3.80	.252 7.20	644	215	_	_	60000	_
093/003	.1181	.3150	.0984	_	-	-	_	-	-	-	.006	.150	.283	044	213	_	_	00000	_
693 (4)	3.00	8.00	3.00	3.80	9.50	0.70	4.00	4.80	9.50	0.90	0.15	3.80	7.20	644	215	X	Х	80000	51000
	.1181	.3150	.1181	.1496	.3740	.0276	.1575	.1890	.3740	.0354	.006	.150	.283						
693/002	3.00	8.00	-	-	9.50	0.70	3.00	-	9.50	0.70	0.15	3.80	7.20	395	141	Х	-	67000	-
	.1181	.3150			.3740	.0276	.1181		.3740	.0276	.006	.150	.283						
603	3.00	9.00	3.00	-	10.50	0.70	5.00	-	10.50	1.00	0.15	3.80	8.20	571	189	Х	_	67000	_
603/003	.1181 3.00	.3543 9.00	.1181	_	.4134	.0276	.1969 4.00	_	.4134 10.60	.0394	.006	.150 4.40	.323 7.60	571	189	X	_	67000	_
003/003	.1181	.3543	_	_	_	_	.1575	_	.4173	.0315	.008	.173	.299	37.1	109	٨	_	0/000	_
603/004	3.00	9.00	2.50	-	10.20	0.60	-	-	_	-	0.20	4.40	7.60	571	189		-	67000	_
	.1181	.3543	.0984		.4016	.0236					.008	.173	.299						
623	3.00	10.00	4.00	4.80	11.50	1.00	4.00	4.80	11.50	1.00	0.15	4.40	8.60	725	265	Х	Χ	65000	44000
400 (10	.1181	.3937	.1575	.1890	.4528	.0394	.1575	.1890	.4528	.0394	.006	.173	.339	70.5	0.4.5			7000	11000
623/13	3.00 .1181	13.00 .5118	4.00 .1 <i>575</i>	4.80	-	-	4.00 .1575	4.80	_	-	0.15 .006	4.40 .1 <i>7</i> 3	8.60	725	265	X	X	70000	46000
633	3.00	13.00	5.00	.1090	15.00	1.00	5.00	.1090	15.00	1.00	0.20	4.80	11.20	1339	488	X	-	55000	_
	.1181	.5118	.1969		.5906	.0394	.1969		.5906	.0394	.008	.1890	.441	1007	100	,		00000	2.
693/0004	3.30	8.00	4.00	-	9.50	0.90	4.00	-	9.50	0.90	0.15	4.10	7.20	625	213	X	<u>-</u>	80000	A -
	.1299	.3150	.1575		.3740	.0354	.1575	_	.3740	.0354	.006	.161	.283						
674/004	4.00	7.00	1.60	-	-	-	1.60	-	-	-	0.08	4.50	6.50	337	129	_	-	60000	-
471	.1575	.2756	.0630				.063				.003	.177	.256	2.45	120	V		47000	
674	4.00 .1575	7.00 .2756	2.00 .0787	-	-	_	2.00 .0787	-	_	-	0.08 .003	4.50 .1 <i>77</i>	6.50 .256	345	130	X		67000	57 S. C.
674/003	4.00	7.00	2.50	_	-	_	2.50	_	8.20	0.60	0.08	4.50	6.50	255	108	X	-	67000	- V
,	.1575	.2756	.0984				.0984		.3228	.0236	.003	.177	.256						
693B/0021	4.00	8.00	3.00	-	-	-	3.00	-	-	-	0.15	4.80	7.20	380	127	X	-/15/	72000	HEXXV
	.1575	.3150	.1181				.1181				.006	.189	.283	1/4			1/2/8		
684	4.00	9.00	2.50	3.30	10.30	0.60	4.00	4.80	10.30	1.00	0.10	4.60	8.40	658	226	X	Х	62000	45000
404/100	.1575	.3543	.0984	.1299	.4055	.0236	.1575	.1890	.4055	.0394	.004	.181	.331	Vito	007	(4)	DE THE	40000	
684/103	4.00 .1575	1 0.00 .393 <i>7</i>	3.00 .1181	-	11.50 .4528	0.80 .0315	-	-	-	-	0.10 .004	4.60 .181	9.40 .370	658	226	- 4	CHAR	48000	_
684/103	4.00	10.00	3.00	_	11.20	0.60	_	_	_	_	0.15	4.80	9.20	711	272	-		56000	_
331/100	.1575	.3937	.1181		.4409	.0236					.006	.189	.362	, , , ,	L, L			30000	
N.L.														1/4		M-S	STATI		

⁽¹⁾ $r_{s,min}$ = minimum single bearing chamfer or maximum permissible shaft or housing fillet radius (2) Other load ratings are possible with different ball complements and non standard retainers (3) Different shields and seals are available

⁽⁴⁾ Bearings also available with 1 or 2 shields/seals

⁽⁵⁾ Limiting speed also depends on seal, material and the respective ball complement

[•] Bearings without shields or retainers are also available with recesses.

Please discuss your desired design in terms of flange, extended inner ring width, shield, lubrication, and material with our Technical Application Consultants to check availability.

Subject to change.

Almost all bearing types can also be enhanced with GRW XTRA. Detailed information you can find on page 79 and following.

GRVV- designation	Main dim [m	nensions in	Bea	ring without clo	osure in [mm] [[inch]	Bed	aring with clos	ure in [mm] [i	nch]	Chamfer in [mm]		dimensions DIN 5418	Load ratin DIN ISC	gs acc. to	Closure	options (3)	Max. limiting sp	eed ⁽⁵⁾ [min ⁻¹]
designation		ch]	Width	Width with	Flange d	imensions	Width with	Width with	Flange di		[inch]	[n	nm]	DII V ISC	, · · · (max)				
			without	extended	without	closure	closure	extended	with c	losure		[ir	nch]						
			closure	inner ring without				inner ring with closure				Shaft	Housing						
		1		closure								diameter	diameter				ı		
					Flange	Flange		6	Flange	Flange	m	1		C _r	C_{Or}	CL - 1.1.(4)	0 140	without closure	
Basic symbol	d	D	В	В	diameter FD	width FB	B ₂	B ₃	diameter FD ₁	width FB ₁	Γ _{s min} (1)	d _{a min}	D _{a max}	[N]	[N]	Shield ⁽⁴⁾	Seal ⁽⁴⁾	or with shield	with seal
684/10	4.00	10.00	2.50	3.30	11.50	1.00	4.00	4.80	11.50	1.00	0.10	4.60	9.40	711	272	Х	Χ	86000	45000
	.1575	.3937	.1575	.1890	.4528	.0394	.1575	.1890	.4528	.0394	.004	.181	.370						
694	4.00	11.00	4.00	-	12.50	1.00	4.00	-	12.50	1.00	0.15	4.80	10.20	730	271	Х	Х	66000	41000
604	.1575	.4331	.1575 4.00	_	.4921	.0394	.1575 4.00		.4921 13.50	.0394	.006 0.20	.189	.402 10.60	734	282	Χ	Χ	56000	37000
004	4.00 .1575	12.00 .4724	.1575	_	13.50 .5315	.0394	.1575	_	.5315	.0394	.008	5.40 .213	.417	/ 34	282	۸	λ	30000	3/000
624	4.00	13.00	5.00	5.80	15.00	1.00	5.00	5.80	15.00	1.00	0.20	5.80	11.20	1.339	488	Χ	X	52000	28000
	.1575	.5118	.1969	.2283	.5906	.0394	.1969	.2283	.5906	.0394	.008	.228	.441						
694/133	4.00	13.00	5.00	-	-	-	5.00	-	-	-	0.15	4.80	12.20	730	271	Χ	Х	65000	53000
	.1575	.5118	.1969				.1969				.006	.189	.480						
624/16	4.00	16.00	5.00	5.80	-	-	5.00	5.80	-	-	0.20	5.80	12.20	1306	486	Χ	Χ	55000	30000
	.1575	.6299	.1969	.2283			.1969	.2283			.008	.228	.480						4222
634	4.00	16.00	5.00	-	18.00	1.00	5.00	-	18.00	1.00	0.30	6.40	13.60	1730	670	Х	Х	44000	43000
624/17	.1575 4.00	.6299 17.00	.1969 5.00	5.80	.7087 -	.0394	.1969 5.00	5.80	.7087 _	.0394	.012 0.20	.252 5.80	.535 15.20	1306	486	X	X	55000	30000
024/17	.1575	.6693	.1969	.2283	_	_	.1969	.2283	_	_	.008	.228	.598	1300	400	^	^	33600	30000
675	5.00	8.00	2.00	-	-	-	2.00	-	-	-	0.08	5.50	7.50	390	160	Χ	-	52000	-
	.1969	.3150	.0787				.0787				.003	.217	.295						
675/003	5.00	8.00	2.50	-	9.20	0.60	2.50	-	-	-	0.10	5.60	7.50	218	90	X	<u>-</u>	63000	A -
	.1969	.3150	.0984		.3622	.0236	.0984				.004	.220	.295						
675/004	5.00	8.00	3,00	-	-	-	3.00	-	-	-	0.08	5.40	7.60	390	160	Х	-	52000	-
675/094	.1969	.3150	.1181				.1181		10.20	0.60	.003	.213	.299	431	160	V		60000	
0/3/094	5.00 .1969	9.00 .3543	3.00 .1181	-	-	-	3.00	-	10.20 .4016	0.60 .0236	0.15 .006	5.40 .213	8.60	431	169	^		00000	378 S. (S.
694A/1002	5.00	10.00	4.00	-	-	-	4.00	-	11.20	0.80	0.15	5.50	8.80	431	169	X	-	60000	-
,	.1969	.3937	.1575				.1575		.4409	.0315	.006	.217	.346						
694/1002	5.00	10.00	4.00	-	-	-	4.00	-	-	-	0.15	5.50	8.80	730	271	Χ	- 40	66000	MAXXX
	.1969	.3937	.1575				.1575				.006	.217	.346				1/28		
694/1002 W1	5.00	10.00	4.00	-	11.60	0.80	4.00	-	11.60	0.80	0.15	5.80	9.20	431	169	Χ	-	60000	-
405	.1969	.3937	.1575		.4567	.0315	.1575		.4567	.0315	.006	.228	.362	V4k.	1000	- A0	IIXI DING	71000	07000
685	5.00 .1969	11.00 .4331	3.00 .1181	-	12.50 .4921	0.80 .0315	5.00 .1969	-	12.50 .4921	1.00 .0394	0.15 .006	5.80 .228	10.70 .421	734	282	X	CLAM	71000	37000
685/003	5.00	11.00	4.00	_	12.50	1.00	4.00	_	12.50	1.00	0.15	5.80	10.70	734	282	X	THIN	62000	_
003/003	.1969	.4331	.1575		.4921	.0394	.1575		.4921	.0394	.006	.228	.421	7 04	202	Λ		02000	
						,				,	.000				-2-6		3 30007		

 $_{\rm II}$ $_{\rm r_s\,min}$ = minimum single bearing chamfer or maximum permissible shaft or housing fillet radius $_{\rm II}$ Other load ratings are possible with different ball complements and non standard retainers $_{\rm II}$ Different shields and seals are available

⁽⁴⁾ Bearings also available with 1 or 2 shields/seals
(5) Limiting speed also depends on seal, material and the respective ball complement

[•] Bearings without shields or retainers are also available with recesses.

Please discuss your desired design in terms of flange, extended inner ring width, shield, lubrication, and material with our Technical Application Consultants to check availability.

Subject to change.

Almost all bearing types can also be enhanced with GRW XTRA. Detailed information you can find on page 79 and following.

GRW- designation	Main dim [m	ensions in	Bea	ring without clo	sure in [mm] [[inch]	Bec	uring with closu	ure in [mm] [i	nch]	Chamfer in [mm]		dimensions DIN 5418	Load ratin DIN ISC	ngs acc. to	Closure	options ⁽³⁾	Max. limiting spe	eed ⁽⁵⁾ [min ⁻¹]
		ch]	Width without closure	Width with extended inner ring without	Flange di without	mensions closure	Width with closure	Width with extended inner ring with closure	Flange di with c	mensions losure	[inch]	[n [ir Shaft	nm] nch] Housing						
Basic symbol	d	D	В	closure B ₁	Flange diameter	Flange width	B ₂	В ₃	Flange diameter	Flange width	r _{s min} (1)	diameter d _{a min}	diameter D _{a max}	C _r	C _{Or}	Shield ⁽⁴⁾	Seal ⁽⁴⁾	without closure	with seal
Busic symbol	ŭ	U	D	٦١	FD	FB	2	<i>D</i> ₃	FD ₁	FB ₁	's min	□ min	Da max	[N]	[N]	onicia	ocai	or with shield	wiiii sedi
695	5.00	13.00	4.00	-	15.00	1.00	4.00	-	15.00	1.00	0.20	6.40	11.60	1077	432	Χ	Х	50000	34000
624/0003	.1969	.5118	.1575		.5906	.0394	.1575		.5906	.0394	.008	.252	.457	1306	486	X	_	52000	
024/0003	5.00	13.00 .5118	5.00	-	-	-	5.00	_	15.00 .5906	1.00 .0394	0.20 .008	6.80 .268	11.20	1300	400	۸	_	32000	_
605	5.00	14.00	5.00	-	16.00	1.00	5.00	-	16.00	1.00	0.20	6.40	12.60	1329	507	Χ	Х	50000	33000
	.1969	.5512	.1969		.6299	.0394	.1969		.6299	.0394	.008	.252	.496						
625	5.00	16.00	5.00	5.80	18.00	1.00	5.00	5.80	18.00	1.00	0.30	7.40	13.60	1729	675	Х	Х	50000	31000
	.1969	.6299	.1969	.2283	.7087	.0394	.1969	.2283	.7087	.0394	.012	.291	.535						
635	5.00	19.00	6.00	-	22.00	1.50	6.00	-	22.00	1.50	0.30	7.40	16.60	2522	1057	Х	Х	40000	22000
635/22	.1969 5.00	.7480 22.00	.2362 6.00	6.80	.8661 -	.0591	.2362 6.00	6.80	.8661	.0591	.012 0.60	.291 7.40	.654 19.60	2458	1053	Χ	X	43000	25000
033/22	.1969	.8661	.2362	.2677	-	_	.2362	.2677	_	_	.024	.291	.772	2430	1000	۸	۸	43000	23000
676	6.00	10.00	2.50	-	11.20	0.60	-	-	-	-	0.15	6.80	9.20	500	216	_	_	35000	_
	.2362	.3937	.0984		.4409	.0236					.006	.268	.362						
676/003	6.00	10.00	3.00	-	-	-	3.00	-	-	-	0.10	6.60	9.40	503	215	Χ	-	46000	_
	.2362	.3937	.1181				.1181				.004	.26	.370						
676/003	6.00	10.00	-	-	-	-	3.00	-	11.20	0.60	0.15	6.80	9.20	500	216	Χ	-	35000	_
/05/1000	.2362	.3937	2.00		10.00	0.70	.1181		.4409	.0236	.006	.268	.362	71/	005			50000	
695/1232	6.00 .2362	12.00 .4724	3.00 .1181	-	13.20 .5197	0.60 .0236	-	_	_	-	0.20 .008	7.40	10.60	716	295	_	_	50000	-
695/1202	6.00	12.00	4.00	_	13.60	0.80	4.00	_	13.60	0.80	0.15	6.80	11.20	851	366	X	Χ	49000	28000
070, 1202	.2362	.4724	.1575		.5354	.0315	.1575		.5354	.0315	.006	.268	.441					.,,,,,	2000
686	6.00	13.00	3.50	4.30	15.00	1.00	5.00	5.80	15.00	1.10	0.15	6.80	12.20	1096	437	Х	Х	55000	33000
	.2362	.5118	.1307	.1693	.5906	.0394	.1969	.2283	.5906	.0433	.006	.268	.48						
696	6.00	15.00	5.00	-	17.00	1.20	5.00	-	1 <i>7</i> .00	1.20	0.20	7.40	13.60	1340	523	X	X	46000	27000
405 (0000	.2362	.5906	.1969		.6693	.0472	.1969		.6693	.0472	.008	.291	.535	1 / 4 /	110	A .		41000	
625/0002	6.00 .2362	16.00 .6299	5.00 .1969	-	1 8.00 .7087	1.00 .0394	5.00	_	18.00 .7087	1.00 .0394	0.15 .006	8.40 .331	13.60 .535	1646	663	Х	_	41000	-
606	6.00	17.00	6.00	_	19.00	1.20	6.00	_	19.00	1.20	0.30	8.00	15.00	2263	846	X	X	45000	30000
	.2362	.6693	.2362		.7480	.0472	.2362		.7480	.0472	.012	.315	.591	2203	040	^		TOO	00000
626	6.00	19.00	6.00	-	22.00	1.50	6.00	-	22.00	1.50	0.30	8.40	16.60	2522	1057	Х	X	40000	22000
	.2362	.7480	.2362		.8661	.0591	.2362		.8661	.0591	.012	.331	.654						
626/005	6.00	19.00	8.00	-	-	-	8.00	-	-	-	0.30	8.40	16.60	2522	1057	X	XITIX	48000	-
	.2362	.7480	.3150				.3150				.012	.331	.654			A.	HILL		
636	6.00	22.00	7.00	-	-	-	7.00	-	-	-	0.30	8.40	19.60	3333	1423	Х	-	36000	-
	.2362	.8661	.2756				.2756				.012	.331	.772						

⁽¹⁾ $r_{s,min}$ = minimum single bearing chamfer or maximum permissible shaft or housing fillet radius (2) Other load ratings are possible with different ball complements and non standard retainers (3) Different shields and seals are available

⁽⁴⁾ Bearings also available with 1 or 2 shields/seals

⁽⁵⁾ Limiting speed also depends on seal, material and the respective ball complement

[•] Bearings without shields or retainers are also available with recesses.

Please discuss your desired design in terms of flange, extended inner ring width, shield, lubrication, and material with our Technical Application Consultants to check availability.

Subject to change.

Almost all bearing types can also be enhanced with GRW XTRA. Detailed information you can find on page 79 and following.

GRW- designation	on	[m			1	osure in [mm] [inch]		1	ure in [mm] [inch]	Chamfer in [mm]	acc. to	g dimensions DIN 5418		ngs acc. to) ⁽²⁾ (max)	Closure	options (3)	Max. limiting sp	peed (5) [min ⁻¹]
		[in	ch]	Width without closure	Width with extended inner ring	Flange di without	mensions closure	Width with closure	extended inner ring		imensions losure	[inch]	[i	mm] inch]						
			ı		without closure		ı		with closure		ı		Shaft diameter	Housing diameter		ı		ı		ı
Basic sym	nbol	d	D	В	B ₁	Flange diameter FD	Flange width FB	B ₂	B ₃	Flange diameter FD ₁	Flange width FB ₁	r _{s min} (1)	d _{a min}	D _{a max}	C, [N]	C _{Or} [N]	Shield ⁽⁴⁾	Seal (4)	without closure or with shield	with seal
677		7.00	11.00	2.50	-	12.20	0.60	-	-	-	-	0.10	7.60	10.40	461	206	_	-	50000	_
177 (00		.2756	.4331	.0984		.4803	.0236	0.00			0.10	.004	.299	.409	47.7	007			50000	
677/00	3	7.00 .2756	11.00 .4331	3.00 .1181	-	-	-	3.00	-	12.20 .4803	0.60 .0236	0.10 .004	7.60	10.40 .409	461	206	X	-	50000	_
688A/1	322	7.00	13.00	3.00	_	14.20	0.60	4.00	_	14.60	0.80	0.15	8.40	11.60	541	276	X	X	48000	30000
000/01	022	.2756	.5118	.1181		.5591	.0236	.1575		.5748	.0315	.006	.331	.457	541	270	^	^	40000	30000
688/13	22	7.00	13.00	-	-	-	-	4.00	-	-	-	0.20	8.40	11.60	335	152	Χ	-	35000	-
		.2756	.5118					.1575				.008	.331	.457						
687	/	7.00	14.00	3.50	-	16.00	1.00	5.00	-	16.00	1.10	0.15	7.80	13.20	1186	505	Χ	Х	50000	31000
1		.2756	.5512	.1307		.6299	.0394	.1969		.6299	.0433	.006	.307	.520						
697		7.00	17.00	5.00	-	19.00	1.20	5.00	-	19.00	1.20	0.30	9.00	15.00	1795	776	X	X	39000	28000
607		.2756 7.00	.6693 19.00	.1969 6.00	_	.7480 22.00	.0472 1.50	.1969 6.00	_	.7480 22.00	.0472 1.50	.012 0.30	.354 9.00	.591 17.00	2522	1057	X	X	43000	22000
007		.2756	.7480	.2362	_	.8661	.0591	.2362	_	.8661	.0591	.012	.350	.669	2322	1037	^	^	43000	22000
627		7.00	22.00	7.00	-	25.00	1.50	7.00	-	25.00	1.50	0.30	9.40	19.60	3369	1363	Х	X	35000	21000
		.2756	.8661	.2756		.9843	.0591	.2756		.9843	.0591	.012	.370	.772						
627/28		7.00	28.00	7.00	7.80	-	-	7.00	7.80	-	-	0.30	9.40	25.80	3369	1363	Χ	-	40000	-
		.2756	1.1024	.2756	.3071			.2756	.3071			.012	.370	1.016						
678		8.00	12.00	2.50	-	13.20	0.60	-	-	-	-	0.10	8.60	11.40	540	275	-	_	48000	-
470 /00	0	.3150	.4724	.0984		.5197	.0236	0.50			0.00	.004	.339	.449	5.40	075	Si Ca		10000	4
678/00	3	8.00 .3150	12.00 .4724	-	-	-	-	3.50 .1307	-	13.60 .5354	0.80 .0315	0.10 .004	8.60 .339	11.40 .449	540	275	X	-	48000	AVZ 118
688A/1	11	8.00	14.00	3.50	_	15.60	0.80	.130/	_	.5554	.0313	0.15	8.80	13.20	817	386		_	45000	_
000/1/		.3150	.5512	.1307		.6142	.0315					.006	.346	.520	517	300			10000	
688A/1	42	8.00	14.00	-	-	-	-	4.00	-	15.60	0.80	0.20	9.40	12.60	817	386	X	1	47000	-
		.3150	.5512					.1575		.6142	.0315	.008	.370	.496			F.		124	
688		8.00	16.00	4.00	-	18.00	1.00	6.00	-	18.00	1.30	0.20	9,40	14.60	1 <i>7</i> 95	776	Χ	Х	48000	28000
		.3150	.6299	.1575		.7087	.0394	.2362		.7087	.0512	.008	.370	.575	F//				78 8 3 6	V/V N/ /3-1-E1-
688/00	2	8.00	16.00	-	-	-	-	4.00	-	-	-	0.20	9.40	14.60	1795	776	X	-/\$	48000	NATA W
600/00	2	.3150	.6299	E 00		10.00	1.10	.1575		10.00	1.10	.008	.370	.575	1705	774	V	V	12000	20000
688/00	3	8.00 .3150	16.00 .6299	5.00 .1969	-	1 8.00 .7087	1.10 .0433	5.00 .1969	-	18.00 .7087	1.10 .0433	0.20 .008	9.40 .370	14.60 .575	1 <i>7</i> 95	776	X	X	43000	28000
698		8.00	19.00	6.00	_	22.00	1.50	6.00	_	22.00	1.50	0.30	10.00	17.00	2240	917	X A	#XI XI X	43000	27000
		.3150	.7480	.2362		.8661	.0591	.2362		.8661	.0591	.012	.394	.669				THE	.0000	2, 000
688/20		8.00	20.00	4.00	4.80	-	-	-	-	-	-	0.20	9.40	18.60	1795	776	-	- 1/	45000	-
		.3150	.7874	.1575	.1890							.008	.370	.732						

⁽¹⁾ $r_{s,min}$ = minimum single bearing chamfer or maximum permissible shaft or housing fillet radius (2) Other load ratings are possible with different ball complements and non standard retainers (3) Different shields and seals are available

⁽⁴⁾ Bearings also available with 1 or 2 shields/seals
(5) Limiting speed also depends on seal, material and the respective ball complement

[•] Bearings without shields or retainers are also available with recesses.

Please discuss your desired design in terms of flange, extended inner ring width, shield, lubrication, and material with our Technical Application Consultants to check availability.

Subject to change.

Almost all bearing types can also be enhanced with GRW XTRA. Detailed information you can find on page 79 and following.

1 0					J		_												
GRW- designation	[m	nensions in	Вес	uring without clo	sure in [mm] [[inch]		I .	ure in [mm] [i	inch]	Chamfer in [mm]		dimensions DIN 5418	Load ratin DIN ISC	gs acc. to ⁽²⁾ (max)	Closure	options ⁽³⁾	Max. limiting spe	eed ⁽⁵⁾ [m in ⁻¹]
	[in	ich]	Width without	Width with extended		imensions closure	Width with closure	Width with extended	Flange di with c	imensions	[inch]		nm] nch]						
			closure	inner ring	WIIIIOUI	ciosure	Closule	inner ring	WIIII C	liosure									
				without closure				with closure				Shaft diameter	Housing diameter						
					Flange	Flange			Flange	Flange								without closure	
Basic symbol	d	D	В	B ₁	diameter FD	width FB	B ₂	B ₃	diameter FD ₁	width FB ₁	r _{s min} (1)	d _{a min}	D _{a max}	C _r [N]	C _{0r} [N]	Shield ⁽⁴⁾	Seal ⁽⁴⁾	or with shield	with seal
608/003	8.00	22.00	6.00	-	-	-	-	-	-	-	0.30	10.00	20.00	3369	1363	_	_	38000	_
608	.3150 8.00	.8661 22.00	.2362 7.00	_	25.00	1.50	7.00	_	25.00	1.50	.012 0.30	.394 10.00	.787 20.00	3369	1363	X	Χ	38000	21000
000	.3150	.8661	.2756	_	.9843	.0591	.2756	_	.9843	.0591	.012	.394	.787	3309	1303	^	^	36000	21000
608/005	8.00	22.00	10.00	_	-	-	10.00	_	-	-	0.30	10.00	20.00	3369	1363	Χ	_	43000	_
	.3150	.8661	.3937	_	-	_	.3937	_	_	_	.012	.394	.787						
608/006	8.00	22.00	10.31	-	-	-	10.31	-	-	-	0.30	10.00	20.00	3369	1363	Х	Х	43000	29000
	.3150	.8661	.4059	-	-	-	.4059	_	-	-	.012	.394	.787						
608/007	8.00	22.00	11.00	-	-	-	11.00	-	-	-	0.30	10.00	20.00	3369	1363	Х	Х	43000	29000
628	.3150 8.00	.8661 24.00	.4331 8.00	_	-	_	.4331 8.00	_	_	_	.012 0.30	.394 10.40	.787 21.60	3360	1430	X	Χ	38000	21000
020	.3150	.9449	.3150	_	_	_	.3150	_	_	_	.012	.409	.850	3300	1430	^	^	36000	21000
6000/0001	8.00	26.00	8.00	_	-	_	8.00	_	-	_	0.30	10.40	24.00	4698	1982	Х	_	35000	_
	.3150	1.0236	.3150				.3150				.012	.409	.945						
638	8.00	28.00	9.00	-	-	-	9.00	-	-	-	0.30	10.40	25.60	4563	1982	Х	-	34000	-
	.3150	1.1024	.3543				.3543				.012	.409	1.008						
679	9.00	14.00	3.00	-	15.50	0.80	-	-	-	-	0.10	9.60	13.40	919	468	_	-	42000	-
679/003	.3543 9.00	.5512 14.00	.1181 4.50	_	.6102 15.50	.0315 0.80	4.50	_	15.50	0.80	.004 0.10	.378 9.60	.528 13.40	919	468	X	X	42000	25000
0/9/003	.3543	.5512	.1772	_	.6102	.0315	.1772	_	.6102	.0315	.004	.378	.528	717	400	^	۸	42000	23000
689	9.00	17.00	4.00	4.80	19.00	1.00	6.00	_	19.00	1.30	0.20	10.40	15.60	1798	797	X	Χ	44000	27000
	.3543	.6693	.1575	.1890	.7480	.0394	.2362		.7480	.0512	.008	.409	.614						AS A STATE OF
689/003	9.00	17.00	5.00	-	-	-	5.00	-	-	-	0.20	10.40	15.60	1798	797	Х	-	44000	-
	.3543	.6693	.1969				.1969				.008	.409	.614						
699	9.00	20.00	6.00	6.80	23.00	1.50	6.00	6.80	23.00	1.50	0.30	11.00	18.00	2467	1081	X	X	40000	25000
609	.3543	.7874	.2362	.2677	.9055	.0591	.2362	.2677	.9055 27.00	.0591	.012 0.30	.433	.709 22.00	3435	1430	X	V	33000	20000
009	9.00 .3543	24.00 .9449	7.00 .2756	_	27.00 1.0630	1.50 .0591	7.00 .2756	-	1.0630	1.50 .0591	.012	11.00 .433	.866	3433	1430	^	X	33000	20000
629	9.00	26.00	8.00	8.80	28.00	2.00	8.00	8.80	28.00	2.00	0.30	11.40	23.60	4.698	1982	Χ	X	34000	19000
	.3543	1.0236	.3150	.3465	1.1024	.0787	.3150	.3465	1.1024	.0787	.012	.449	.929	A			100	STANKE STANKE	MANA
6700	10.00	15.00	3.00	-	16.50	0.80	-	-	16.50	0.80	0.15	10.80	14.20	855	435	-	-	17000	-
	.3937	.5906	.1181		.6496	.0315			.6496	.0315	.006	.425	.559	Poort-2	1400		17 18/74		
6700/003	10.00	15.00	4.00	-	16.50	0.80	4.00	-	16.50	0.80	0.15	10.80	14.20	855	435	X	XXX	17000	10000
4000 (4)	.3937	.5906	.1575	F 00	.6496	.0315	.1575	7.00	.6496	.0315	.006	.425	.559	1000	015	/	HILL	42000	0.5000
6800 (4)	1 0.00 .393 <i>7</i>	19.00 .7480	5.00 .1969	5.80 .2283	21.00 .8268	1.00 .0394	7.00 .2756	7.80	21.00 .8268	1.50 .0591	0.30 .012	12.00 .472	1 7.00	1922	915	X	X	42000	25000
N.L.	.343/	./400	.1909	.2203	.0200	.0394	.2/30	.30/1	.0200	.0391	.012	.4/ ∠	.009	Total -		Maria			

I 43

⁽¹⁾ $r_{s,min}$ = minimum single bearing chamfer or maximum permissible shaft or housing fillet radius (2) Other load ratings are possible with different ball complements and non standard retainers (3) Different shields and seals are available

⁽⁴⁾ Bearings also available with 1 or 2 shields/seals

⁽⁵⁾ Limiting speed also depends on seal, material and the respective ball complement

[•] Bearings without shields or retainers are also available with recesses.

Please discuss your desired design in terms of flange, extended inner ring width, shield, lubrication, and material with our Technical Application Consultants to check availability.

Subject to change.

Almost all bearing types can also be enhanced with GRW XTRA. Detailed information you can find on page 79 and following.

GRW- designation	Main dim		Веа	ring without clo	osure in [mm] [inch]	Вес	aring with clos	ure in [mm] [i	inch]	Chamfer in [mm]		dimensions DIN 5418	Load ratin DIN ISC	gs acc. to	Closure	options ⁽³⁾	Max. limiting sp	peed ⁽⁵⁾ [m in ⁻¹]
	[in-	ch]	Width without closure	Width with extended inner ring	Flange di without	mensions closure	Width with closure	Width with extended inner ring		imensions losure	[inch]	[n	nm] nch]		, · · · /				
		ı		without closure		ı		with closure		1		Shaft diameter	Housing diameter		ı		1		1
Basic symbol	d	D	В	В ₁	Flange diameter FD	Flange width FB	B ₂	В ₃	Flange diameter FD ₁	Flange width FB ₁	r _{s min} (1)	d _{a min}	D _{a max}	C _r [N]	C _{Or} [N]	Shield ⁽⁴⁾	Seal ⁽⁴⁾	without closure or with shield	with seal
6800/002	10.00	19.00	-	-	-	-	5.00	-	21.00	1.00	0.30	12.00	17.00	1922	915	Χ	-	34000	-
	.3937	.7480					.1969		.8268	.0394	.012	.472	.669						
6800/003	10.00	19.00	6.00	-	-	-	6.00	-	-	-	0.30	12.00	17.00	1922	915	X	-	35000	_
1000 (000	.3937	.7480	.2362				.2362				.012	.472	.669	1000	015			0.4000	
6800/202	10.00 .393 <i>7</i>	20.00 .7874	-	-	-	-	5.00	-	-	_	0.30 .012	12.00 .472	18.00 .709	1922	915	Х	_	34000	_
6900	10.00	22.00	6.00	_	25.00	1.50	6.00	_	25.00	1.50	0.30	12.00	20.00	2695	1273	Χ	Χ	41000	24000
0700	.3937	.8661	.2362		.9843	.0591	.2362		.9843	.0591	.012	.472	.787	2073	1270	Λ	^	41000	24000
6000	10.00	26.00	8.00	8.80	28.00	2.00	8.00	8.80	28.00	2.00	0.30	12.40	23.60	4698	1982	Χ	Х	35000	19000
	.3937	1.0236	.3150	.3465	1.1024	.0787	.3150	.3465	1.1024	.0787	.012	.488	.929						
6000/003	10.00	26.00	10.00	-	-	-	10.00	-	-	-	0.30	12.40	23.60	4149	1388	Χ	-	38000	-
	.3937	1.0236	.3937				.3937				.012	.488	.929						
16100	10.00	28.00	8.00	-	-	-	8.00	-	-	-	0.30	14.20	23.80	4620	1960	Χ	-	37000	
	.3937	1.1024	.3150				.3150				.012	.559	.937						
6200	10.00	30.00	9.00	-	-	-	9.00	-	-	-	0.60	14.20	25.80	4340	1920	Х	Х	27000	18000
/ 000	.3937	1.1811	.3543				.3543				.024	.559	1.016	4070	0750	V	V	07000	10000
6300	10.00 .393 <i>7</i>	35.00 1.3780	11.00 .4331	-	-	-	11.00 .4331	-	-	_	0.60 .024	14.20 .559	20.80	6870	2750	Х	X	27000	18000
6701	12.00	18.00	4.00	_	19.50	0.80	4.00	_	19.50	0.80	0.20	13.40	16.60	926	530	X	X	15000	10000
0/01	.4724	.7087	.1575		.7677	.0315	.1575		.7677	.0315	.008	.528	.654	720	330	Λ	^	13000	10000
6801	12.00	21.00	5.00	-	-	_	5.00	_	-	-	0.30	14.00	19.00	1930	900	X		30000	A
	.4724	.8268	.1969				.1969				.012	.551	.748						ACCES.
6801/003	12.00	21.00	6.00	-	-	-	6.00	-	-	-	0.30	14.00	19.00	1720	840	Χ	-	32000	-
	.4724	.8268	.2362				.2362				.012	.551	.748						
6801/004	12.00	21.00	7.00	-	23.00	1.50	7.00	-	23.00	1.50	0.30	14.00	19.00	1915	1041	X	X	39000	24000
	.4724	.8268	.2756		.9055	.0591	.2756		.9055	.0591	.012	.551	.748			Į.		1	
6901	12.00	24.00	6.00	-	-	-	6.00	-	-	-	0.30	14.00	22.00	2971	1460	Х	-	32000	_
1,003	.4724	.9449	.2362				.2362				.012	.551	.866	5100 PM	0.070			ZJK Badanik N	VX NACTOR
16001	12.00	28.00	7.00	-	-	-	7.00	-	-	_	0.30	14.00	26.00	5100	2370	- 1-4	7,434	32000	MAXIN
6001	.4724	1.1024	.2756		20.00	2.00	.2756		20.00	2.00	.012	.551	1.024	5007	2270	V	V	21000	17000
6001	12.00 .4724	28.00 1.1024	8.00 .3150	-	30.00	2.00 .0787	8.00 .3150	-	30.00	2.00 .0787	0.30 .012	14.00 .551	26.00 1.024	523 <i>7</i>	2370	X	Х	31000	17000
6001/003	12.00	28.00	11.00	_	-	.07 67	11.00	_	-	.0/ 6/	0.30	14.00	26.00	5237	2359	X A	#X\ L\\	31000	_
0001/000	.4724	1.1024	.4331				.4331				.012	.551	1.024	0207	12007		THE	31000	
63001	12.00	28.00	12.00	-	-	-	12.00	-	-	-	0.50	14.00	26.00	5100	2370	X	X	30000	16000
	.4724	1.1024	.4724				.4724				.020	.551	1.024						

 $_{\rm II}$ r_{s min} = minimum single bearing chamfer or maximum permissible shaft or housing fillet radius $_{\rm II}$ Other load ratings are possible with different ball complements and non standard retainers $_{\rm II}$ Different shields and seals are available

⁽⁴⁾ Bearings also available with 1 or 2 shields/seals
(5) Limiting speed also depends on seal, material and the respective ball complement

[•] Bearings without shields or retainers are also available with recesses.

Please discuss your desired design in terms of flange, extended inner ring width, shield, lubrication, and material with our Technical Application Consultants to check availability.

Subject to change.

Almost all bearing types can also be enhanced with GRW XTRA. Detailed information you can find on page 79 and following.

GRW- designation	Main dim	nensions in	Bea	ring without clo	osure in [mm] [inch]	Bed	aring with clos	ure in [mm] [inch]	Chamfer in [mm]		dimensions DIN 5418		ngs acc. to) ⁽²⁾ (max)	Closure	options ⁽³⁾	Max. limiting sp	peed ⁽⁵⁾ [min ⁻¹]
3		ch]	Width without closure	Width with extended inner ring	Flange di without	mensions closure	Width with closure	Width with extended inner ring		imensions closure	[inch]	[n	nm] nch]		, , ,				
			Closure	without closure				with closure				Shaft diameter	Housing diameter						
Basic symbol	d	D	В	В ₁	Flange diameter FD	Flange width FB	B ₂	B ₃	Flange diameter FD ₁	Flange width FB ₁	r _{s min} (1)	d _{a min}	D _{a max}	C _r [N]	C _{or} [N]	Shield ⁽⁴⁾	Seal ⁽⁴⁾	without closure or with shield	with seal
16101	12.00	30.00	8.00	-	-	-	8.00	-	-	-	0.50	14.40	27.60	5070	2360	Х	Х	28000	16000
6201	.4724 12.00	1.1811 32.00	.3150 10.00	_	-	_	.3150 10.00	_	_	-	.020 0.60	.567 16.20	1.08 <i>7</i>	5770	2450	Х	X	26000	15000
0201	.4724	1.2598	.3937		_	_	.3937				.024	.638	1.094	3//0	2430	^	Λ	20000	13000
	7																		
6301	12.00	37.00	12.00	-	-	-	12.00	-	-	-	1.00	17.60	31.40	8240	3360	Х	Χ	25000	14000
12	.4724	1.4567	.4724				.4724				.039	.693	1.236						
6702	15.00	21.00	4.00	-	-	-	4.00	-	-	-	0.20	16.40	19.60	937	582	Х	X	13000	9000
6802	.5906 15.00	.8268 24.00	.1575 5.00	_	_	_	.1575 5.00	_	_	_	.008	.646 17.00	.772 22.00	2080	1100	Х	Х	25000	15000
0002	.5906	.9449	.1969				.1969				.012	.669	.866	2000	1100	^	,	23000	13000
6802/003	15.00	24.00	7.00	-	26.00	1.50	7.00	-	26.00	1.50	0.30	17.00	22.00	2073	1253	Х	Х	33000	18000
	.5906	.9449	.2756	-	1.0236	.0591	.2756	-	1.0236	.0591	.012	.669	.866						
6902	15.00 .5906	28.00 1.1024	7.00 .2756	-	-	-	7.00 .2756	-	-	-	0.30 .012	1 7.00 .669	26.00	4445	2268	Х	X	24000	16000
16002	15.00	32.00	8.	-	-	-	8.00	-	_	-	0.50	17.00	30.00	5600	2830	X	X	26000	14000
	.5906	1.2598	.3150				.3150				.020	.669	1.181						
6002	15.00	32.00	9.00	-	-	-	9.00	-	-	-	0.30	17.00	30.00	5676	2819	X	-	25000	A 7 4 5
4000	.5906	1.2598	.3543				.3543				.012	.669	1.181	/ 400	0000	/ /////	V	0.4000	1/000
6202	15.00 .5906	35.00 1.3780	11.00 .4331	-	-	-	11.00 .4331	-	_	-	0.60 .024	19.20 .756	30.80 1.213	6490	3000	X	X	24000	16000
	.5700	1.07 00	.4001				.4001				.024	., 30	1.210						
6302	15.00	42.00	13.00	_		_	13.00	_	_		1.50	24.00	33.00	11400	5450	X	X	21000	11000
0302	.5906	1.6535	.5118	_	-	_	.5118	_	_	-	.059	.945	1.299	11400	3430	٨	^	21000	11000
6703	17.00	23.00	4.00	-	24.50	0.80	4.00	-	24.50	0.80	0.20	18.40	21.60	1000	658	X	X A	11000	7000
	.6693	.9055	.1575		.9646	.0315	.1575		.9646	.0315	.008	.724	.850	THE			1238		De la companya della companya della companya de la companya della
6803	17.00	26.00	5.00	-	-	-	5.00	-	-	-	0.30	19.00	24.00	2240	1270	Х	-	22000	-
6903	.6693 17.00	1.0236 30.00	.1969 7.00	_	_	_	.1969 7.00	_	_	_	.012 0.30	.748 19.00	.945 28.00	4723	2547	X	WI I FREE	21000	_
0903	.6693	1.1811	.2756	_	_	_	.2756	_	_	_	.012	.748	1.102	4/23	2547	^	CHITT	21000	_
16003	17.00	35.00	8.00	-	-	-	8.00	-	-	-	0.30	19.00	33.00	6000	3250	Х	-	23500	-
	.6693	1.378	.3150				.3150				.012	.748	1.299						

⁽¹⁾ $r_{s,min}$ = minimum single bearing chamfer or maximum permissible shaft or housing fillet radius (2) Other load ratings are possible with different ball complements and non standard retainers (3) Different shields and seals are available

⁽⁴⁾ Bearings also available with 1 or 2 shields/seals

⁽⁵⁾ Limiting speed also depends on seal, material and the respective ball complement

[•] Bearings without shields or retainers are also available with recesses.

Please discuss your desired design in terms of flange, extended inner ring width, shield, lubrication, and material with our Technical Application Consultants to check availability.

Subject to change.

Almost all bearing types can also be enhanced with GRW XTRA. Detailed information you can find on page 79 and following.

GRW- designation	Main dim	nensions in	Bea	ring without clc	osure in [mm] [inch]	Bed	aring with clos	ure in [mm] [i	inch]	Chamfer in [mm]		dimensions DIN 5418		gs acc. to	Closure	options ⁽³⁾	Max. limiting sp	eed ⁽⁵⁾ [min ⁻¹]
and the second s	[in	ch]	Width without closure	Width with extended inner ring	Flange di without	mensions closure	Width with closure	Width with extended inner ring		imensions losure	[inch]	[n	nm] nch]		(
		ı		without closure		ı		with closure		ı		Shaft diameter	Housing diameter		ı		ı		ı
Basic symbol	d	D	В	В ₁	Flange diameter FD	Flange width FB	B ₂	B ₃	Flange diameter FD ₁	Flange width FB ₁	r _{s min} (1)	d _{a min}	D _{a max}	C _r [N]	C _{Or} [N]	Shield ⁽⁴⁾	Seal ⁽⁴⁾	without closure or with shield	with seal
6003	17.00	35.00	10.00	-	-	-	10.00	-	-	-	0.30	19.00	33.00	5090	2630	Х	Х	23000	18000
1000	.6693	1.3780	.3937				.3937				.012	.748	1.299	0100	0.050			00000	15000
6203	17.00 .6693	40.00 1.5748	12.00 .4724	-	-	-	12.00 .4724	-	-	-	0.60 .024	21.20 .835	35.80	8130	3850	X	Х	20000	15000
3	.0093	1.3740	.4/ 24				.47 24				.024	.033	1.409						
6303	17.00	47.00	14.00	-	-	-	14.00	-	-	-	1.00	22.60	41.40	11550	5330	Χ	Х	18000	14000
1/2	.6693	1.8504	.5512				.5512				.039	.890	1.630						
6704	20.00	27.00	4.00	-	28.50	0.80	4.00	-	28.50	0.80	0.20	22.00	25.60	1402	729	Х	Х	10000	7000
6804	.7874 20.00	1.0630 32.00	.1575 7.00	_	1.122 35.00	.0315 1.50	.1575 7.00	_	1.122 35.00	.0315 1.50	.008	.866 22.00	1.008 30.00	4015	2462	X	X	25000	13000
0604	.7874	1.2598	.2756	_	1.378	.0591	.2756	_	1.378	.0591	.012	.866	1.181	4013	2402	^	۸	23000	13000
6904	20.00	37.00	9.00	_	40.00	2.00	9.00	2.00	40.00	2.00	0.30	22.00	35.00	6381	3682	Х	Χ	23000	12000
	.7874	1.4567	.3543		1.5748	.0787	.3543	.0787	1.5748	.0787	.012	.866	1.378						
16004	20.00	42.00	8.00				8.00				0.30	22.00	40.00	6940	4100	Χ	-	21000	-
	.7874	1.6535	.3150				.3150				.012	.866	1.575						
6004	20.00	42.00	12.00	-	-	-	12.00	-	-	-	1.00	24.60	37.40	7900	4250	Х	X	21000	11000
6204	.7874 20.00	1.6535 47.00	.4724 14.00	_	_	_	.4724 14.00	_	_	_	.039	.969 25.60	1.472 41.40	10910	5360	X	X	17000	10000
0204	.7874	1.8504	.5512	_	-	_	.5512	_	_	_	.039	1.008	1.630	10910	3300	٨	Χ	17000	10000
6705	25.00	32.00	4.00	_	-	_	4.00	_	34.00	1.00	0.20	27.00	30.60	1091	838	1-11	χ	12000	8000
	.9843	1.2598	.1575				.1575		1.3386	.0394	.008	1.063	1.205						
6805	25.00	37.00	7.00	-	40.00	1.50	7.00	-	40.00	1.50	0.30	27.00	35.00	4303	2932	Х	-	21000	-
	.9843	1.4567	.2756		1.5748	.0591	.2756		1.5748	.0591	.012	1.063	1.378						
6905	25.00	42.00	9.00	-	45.00	2.00	9.00	-	45.00	2.00	0.30	27.00	40.00	7001	4540	X	X	19000	10000
14005	.9843	1.6535	.3543		1.7717	.0787	.3543		1.7717	.0787	.012	1.063	1.575	0.550	4/00	V		17000	MARKATAN A
16005	25.00 .9843	47.00 1.8504	8.00 .3150	-	-	-	8.00 .3150	-	-	-	0.60 .024	27.00 1.063	45.00 1. <i>77</i> 2	8550	4690	X	_	17000	_
6005	25.00	47.00	12.00	_	_	_	12.00	_	_	_	0.60	28.20	43.80	8550	4690	X	X	18000	9500
	.9843	1.8504	.4724				.4724				.024	1.110	1.724			,,	///	THE WAY	A A STATE OF THE S
6706	30.00	37.00	4.00	-	39.00	1.00	4.00	-	39.00	1.00	0.20	32.00	35.60	1143	947	Х	-	17000	-
	1.1811	1.4567	.1575		1.5354	.0394	.1575		1.5354	.0394	.008	1.260	1.402						
6806	30.00	42.00	7.00	-	45.00	1.50	7.00	-	45.00	1.50	0.30	32.00	40.00	4538	3402	X	XX	18000	9000
	1.1811	1.6535	.2756		1.7717	.0591	.2756		1.7717	.0591	.012	1.260	1.575	M		Ace	HILL		
6906	30.00	47.00	9.00	-	50.00	2.00	9.00	-	50.00	2.00	0.30	32.00	45.00	7242	5003	X	Х	17000	8500
	1.1811	1.8504	.3543		1.9685	.0787	.3543		1.9685	.0787	.012	1.260	1.772						

 $_{\rm II}$ r_{s min} = minimum single bearing chamfer or maximum permissible shaft or housing fillet radius $_{\rm II}$ Other load ratings are possible with different ball complements and non standard retainers $_{\rm II}$ Different shields and seals are available

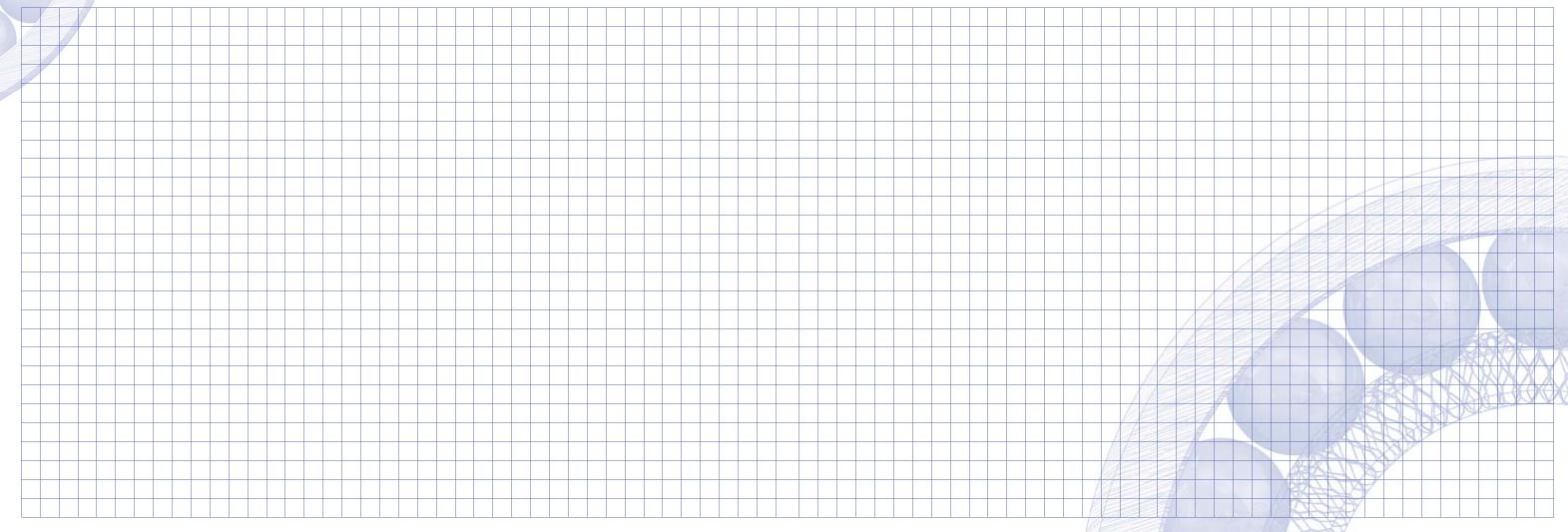
⁽⁴⁾ Bearings also available with 1 or 2 shields/seals
(5) Limiting speed also depends on seal, material and the respective ball complement

[•] Bearings without shields or retainers are also available with recesses.

Please discuss your desired design in terms of flange, extended inner ring width, shield, lubrication, and material with our Technical Application Consultants to check availability.

Subject to change.

Almost all bearing types can also be enhanced with GRW XTRA. Detailed information you can find on page 79 and following.



GRW- designation	Main dim [m [ind	m]	Bear Width without closure	without closed with with extended inner ring without closure	sure in [mm] [Flange di without	mensions		Width with extended inner ring with closure	ure in [mm] [i Flange di With c	mensions	Chamfer in [mm] [inch]	acc. to	g dimensions DIN 5418 mm] (inch] Housing diameter	Load ratin DIN ISO		Closure o	pptions ⁽³⁾	Max. limiting spe	eed ⁽⁵⁾ [m in ⁻¹]
Basic symbol	d	D	В	B ₁	Flange diameter FD	Flange width FB	B ₂	В ₃	Flange diameter FD ₁	Flange width FB ₁	r _{s min} (1)	d _{a min}	D _{a max}	С _г [N]	C _{Or} [N]	Shield ⁽⁴⁾	Seal ⁽⁴⁾	without closure or with shield	with seal
6807	35.00 1.3780	47.00 1.8504	7.00 .2756	-	50.00 1.9685	1.50	7.00 .2756	-	50.00 1.9685	1.50	0.30 .012	37.00 1.457	45.00	4729	3821	Х	Х	16000	8000

Your Notes:

 $_{1}^{1}$ $_{1}^{1}$ $_{2}^{1}$ $_{3}$ min = minimum single bearing chamfer or maximum permissible shaft or housing fillet radius $_{1}^{1}$ $_{2}^{1}$ Other load ratings are possible with different ball complements and non standard retainers

⁽³⁾ Different shields and seals are available

⁽⁴⁾ Bearings also available with 1 or 2 shields/seals

⁽⁵⁾ Limiting speed also depends on seal, material and the respective ball complement

[•] Bearings without shields or retainers are also available with recesses.

Please discuss your desired design in terms of flange, extended inner ring width, shield, lubrication, and material with our Technical Application Consultants to check availability.

Subject to change.

Almost all bearing types can also be enhanced with GRW XTRA. Detailed information you can find on page 79 and following.

GRW designation		nensions in	Bear	ing without clos	sure in [mm] [i	nch]	Ве	aring with clos	ure in [mm] [i l	nch]	Chamfer in [mm]	Mounting of	limensions acc. BMA Std. 12.2 in	Load ratin DIN ISC	igs acc. to) ⁽²⁾ (max)	Closure	options (3)	Max. limiting s	peed ⁽⁵⁾ [min ⁻¹]
		nch [']]	Wldth without closure	Width with extended	Flange d without	imensions closure	Width with closure	Width with extended		limensions closure	[inch]		mm] nch]		(- '				
			Closure	inner ring without closure				inner ring with closure				Shaft diameter	Housing diameter						
Basic symbol	d	D	В	B ₁	Flange diameter FD	Flange width FB	B ₂	B ₃	Flange diameter FD ₁	Flange width FB ₁	r _{s min} (1)	d _{a min}	D _{a max}	C [N]	C _{Or} [N]	Shield ⁽⁴⁾	Seal ^[4]	without closure or with shield	with seal
1016	1.016	3.1 <i>7</i> 5	1.191	-	-	-	-	-	-	-	0.08	1.50	2.65	106	28	-	-	150000	-
	.0400	.1250	.0469								.003	.059	.104						
1191	1.191	3.967	1.588	2.381	5.156	0.330	-	_	-	-	0.08	1.80	3.35	163	44	_	_	129000	_
	.0469	.1562	.0625	.0937	.2030	.0130					.003	.071	.132						
1397	1.397	4.763	1.984	_	_	_	2.779	_	5.944	0.787	0.08	2.00	4.15	239	67	Χ	_	114000	_
5// 4	.0550	.1875	.0781	0.175	7.510	0.504	.1094	4.077	.2340	.03100	.003	.079	.163	00/	00	\ <u>'</u>		05000	
5/64	1.984	6.350	2.380	3.175	7.518	0.584	3.571	4.366	7.518	0.787	0.08	2.60	5.75	286	90	Χ	_	95000	_
0000	.0781	.2500	.0937	.1250	.2960	.0230	.1406	.1719	.2960	.0310 0.787	.003	.102	.226	192	50	V		0.4000	
2380	2.380 .0937	4.763 .1875	1.588 .0625	2.380 .0937	5.944 .2340	0.457 .0180	2.380 .0937	3.1 <i>7</i> 5 .1250	5.944	.0310	0.08 .003	2.90 .114	4.25 .167	192	59	Х	_	94000	_
3175/0002	2.380	6.350	2.779	0937	7.518	0.787	2.779	.1250	.2340 7.518	0.787	0.08	2.95	5.75	292	97	Χ	_	82000	_
31/3/0002	.0937	.2500	.1094	_	.2960	.0310	.1094	_	.2960	.0310	.003	.116	.226	292	97	^	_	02000	_
3/32	2.380	7.938	2.779	3.571	9.119	0.584	3.571	4.366	9.119	0.787	0.08	3.10	7.25	644	215	Х	X	62000	51000
3/32	.0937	.3125	.1094	.1406	.3590	.0230	.1406	.1719	.3590	.0310	.003	.122	.285	044	215	٨	^	02000	31000
3175/002	3.175	6.350	-	-	-	-	2.380		7.518	0.584	0.08	3.75	5.75	311	109	Χ	_	80000	_
017 07 002	.1250	.2500					.0937		.2960	.0230	.003	.148	.226	011	107	Λ.		00000	
3175	3.175	6.350	2.380	3.175	7.518	0.584	2.779	3.571	7.518	0.787	0.08	3.75	5.75	292	97	Χ	X	80000	53000
0.70	.1250	.2500	.0937	.1250	.2960	.0230	.1094	.1406	.2960	.0310	.003	.148	.226	2,2					
3175A	3.175	6.350	2.380	_	7.518	0.584	2.779	_	7.518	0.787	0.08	3.75	5.75	311	109	Х	-	80000	_
	.1250	.2500	.0937		.2960	.0230	.1094		.2960	.0310	.003	.148	.226						
1/8A	3.175	7.938	2.779	3.571	9.119	0.584	3.571	4.366	9.119	0.787	0.08	3.90	7.20	644	215	X	X	65000	51000
	.1250	.3125	.1094	.1406	.3590	.0230	.1406	.1719	.3590	.0310	.003	.154	.283						A Section
3175/061	3.175	9.525	2.779	-	-	-	2.779	-	-	-	0.08	3.90	8.80	292	97	Х	-	80000	-
	.1250	.3750	.1094				.1094				.003	.154	.346						
3175/6	3.175	9.525	_	_	-	_	2.779	-	-	_	0.08	3.90	8.80	292	97	X	- W	80000	-
	.1250	.3750					.1094				.003	.154	.346					1	NO.A.A.
1/8A/6	3.175	9.525	-	_	-	-	3.571	4.366	10.719	0.787	0.08	3.90	8.80	644	215	Χ	X	82000	51000
	.1250	.3750					.1406	.1719	.4220	.0310	.003	.154	.346						X/1 11 /4 /
1/8B	3.175	9.525	3.967	4.763	11.176	0.762	3.967	4.763	11.176	0.762	0.30	4.55	8.25	720	260	X	X	61000	44000
	.1250	.3750	.1562	.1875	.4400	.0300	.1562	.1875	.4400	.0300	.012	.179	.325			\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-	1111	MANA	34
3175/552	3.175	10.414	-	_	_	-	2.380	-	_	-	0.08	3.75	8.40	292	97	Х	_	80000	-
	.1250	.4100					.0937				.003	.148	.331	Trans-	Per		17113/73	S.D.	
3175/8	3.175	12.700	_	_	_	_	2.779	3.571	_	_	0.08	4.55	11.35	292	97	X	KILLY K	80000	-
	.1250	.5000					.1094	.1406			.003	.179	.447	M		Ą	SHIM		
1/8B/083	3.175	12.700	4.366	-	_	-	4.366	-	_	-	0.30	4.55	11.35	725	265	Χ	_	74000	-
	.1250	.5000	.1719				.1719				.012	.179	.447						

 $^{^{(1)}}$ $r_{s\,min}$ = minimum single bearing chamfer or maximum permissible shaft or housing fillet radius $^{(2)}$ Other load ratings are possible with different ball complements and non standard retainers $^{(3)}$ Different shields and seals are available

⁽⁴⁾ Bearings also available with 1 or 2 shields/seals
(5) Limiting speed also depends on seal, material and the respective ball complement

[•] Bearings without shields or retainers are also available with recesses.

Please discuss your desired design in terms of flange, extended inner ring width, shield, lubrication, and material with our Technical Application Consultants to check availability.

[•] Subject to change.

Almost all bearing types can also be enhanced with GRW XTRA. Detailed information you can find on page 79 and following.

GRW designation	[m		Beari	ng without closi	ure in [mm] [i i	nch]		aring with clos	ure in [mm] [i l	nch]	Chamfer in [mm]		dimensions acc. BMA Std. 12.2 in	Load ratin DIN ISO	gs acc. to (2) (max)	Closure	options (3)	Max. limiting s	peed ⁽⁵⁾ [min ⁻¹]
Ü	[in		Wldth without closure	Width with extended inner ring	Flange di without		Width with closure	Width with extended inner ring		limensions closure	[inch]	[i	[mm] inch]						
			Closure	without closure		1		with closure				Shaft diameter	Housing diameter		ı		1		1
Basic symbol	d	D	В	В ₁	Flange diameter FD	Flange width FB	B ₂	B ₃	Flange diameter FD ₁	Flange width FB ₁	r _{s min} (1)	d _{a min}	D _{a max}	C [N]	C _{or} [N]	Shield ⁽⁴⁾	Seal ⁽⁴⁾	without closure or with shield	with seal
3967/002	3.967	7.938	-	-	_	-	2.779	-	-	-	0.08	4.55	7.30	391	165	Х	-	65000	-
	.1562	.3125					.1094				.003	.179	.287						
3967	3.967	7.938	2.779	3.571	9.119	0.584	3.175	3.967	9.119	0.914	0.08	4.55	7.30	391	165	Χ	X	68000	42000
	.1562	.3125	.1094	.1406	.3590	.0230	.1250	.1562	.3590	.0360	.003	.179	.287						
4763A/002	4.763	7.938	_	-	-	-	2.779	-	-	-	0.08	5.35	7.30	391	165	Χ	_	61000	_
	.1875	.3125					.1094				.003	.211	.287						
4763A	4.763	7.938	2.779	3.571	9.119	0.584	3.175	3.967	9.119	0.914	0.08	5.35	7.30	391	165	Χ	X	65000	42000
//	.1875	.3125	.1094	.1406	.3590	.0230	.1250	.1562	.3590	.0360	.003	.211	.287						
4763A/062	4.763	9.525	2.779	_	_	_	2.779	_	_	-	0.08	5.35	7.30	391	165	Х	X	65000	42000
	.1875	.3750	.1094			/	.1094				.003	.211	.287						
4763B	4.763	9.525	3.175	3.967	10.719	0.584	3.175	3.967	10.719	0.787	0.08	5.50	8.80	730	271	Х	X	56000	41000
47/04/000	.1875	.3750	.1250	.1562	.4220	.0230	.1250	.1562	.4220	.0310	.003	.217	.346	001	1/5	V		70000	
4763A/082	4.763 .1875	12.700 .5000	_	_	_	_	2.779 .1 094	3.571 .1406	_	_	0.08 .003	5.35 .211	8.80 .346	391	165	Х	_	70000	_
4763B/083	4.763	12.700	3.967	_	_	_	3.967	.1400	_	_	0.08	6.20	11.35	730	271	Χ	_	56000	_
47 0007 000	.1875	.5000	.1562				.1562				.003	.244	.447	730	2/ 1	٨		30000	
3/16/002	4.763	12.700	-	_	_	_	3.967	_	_	_	0.30	6.20	11.35	1339	488	Χ	_	50000	
0, 10, 002	.1875	.5000					.1562				.012	.244	.447						
3/16	4.763	12.700	3.967	4.763	14.351	1.067	4.978	5.771	14.351	1.067	0.30	6.20	11.35	1339	488	Χ	Х	50000	37000
·	.1875	.5000	.1562	.1875	.5 65	.0420	.1960	.2272	.5 65	.0420	.012	.244	.447						
4763B/084	4.763	12.700	2.779				5.558				0.30	6.20	11.35	730	271	- /		43000	A -
	.1875	.5000	.1094				.2188				.012	.244	.447						A Selection
1/4A/0001	4.763	15.875	4.978	-	17.526	1.067	4.978	-	17.526	1.067	0.30	6.20	14.35	1651	670	Χ	X	41000	31000
	.1875	.6250	.1960		.6900	.0420	.196		.6900	.0420	.012	.244	.565						
6350A	6.350	9.525	3.175	3.967	10.719	0.584	3.175	3.967	10.719	0.914	0.08	6.90	8.95	391	165	X	X	54000	35000
	.2500	.3750	.1250	.1562	.4220	.02300	.1250	.1562	.4220	.0360	.003	.272	.352			#			
6350B	6.350	12.700	3.175	3.967	13.894	0.584	4.763	5.558	13.894	1.143	0.13	7.20	11.85	730	271	Χ	X	49000	33000
- / / /	.2500	.5000	.1250	.1562	.5000	.02300	.1875	.2188	.5000	.0450	.005	.283	.467					WK D. J. Y.	VI N 13-(-E)
1/4A	6.350	15.875	4.978	5.771	17.526	1.067	4.978	5.771	17.526	1.067	0.30	7.85	14.35	1651	670	X	X	43000	31000
1 /4 /000	.2500	.6250	.1960	.2272	.6900	.0420	.1960	.2272	.6900	.0420	.012	.309	.565	0.500	10.57	No.	/ A SA		00000
1/4/002	6.350	19.050	_	_	_	_	5.558	_	_	_	0.41	8.20	17.20	2522	1057	X	X	35000	28000
1 / 4	.2500	.7500	E E E C O				.2188				.016	.323	.677	0.500	1057	V		25000	20000
1/4	6.350 .2500	19.050 7500	5.558 .2188	-	_	_	7.142 .2812	_	_	_	0.41 .016	8.20 .323	17.20 .677	2522	1057	X	CLX+X	35000	28000
7938	7.938	.7500	3 .967	4.763	13.894	0.787	3.967	4.763	13.894	0.787	0.13	8.80	11.85	539	279	X	X	45000	30000
/ 700	.3125	.5000	.1 562	.1875	.5000	.03100	.1562	.1875	.5000	.0310	.005	.346	.467	339	2/9	٨	^	43000	30000

⁽¹⁾ $r_{s,min}$ = minimum single bearing chamfer or maximum permissible shaft or housing fillet radius (2) Other load ratings are possible with different ball complements and non standard retainers (3) Different shields and seals are available

⁽⁴⁾ Bearings also available with 1 or 2 shields/seals

⁽⁵⁾ Limiting speed also depends on seal, material and the respective ball complement

[•] Bearings without shields or retainers are also available with recesses.

Please discuss your desired design in terms of flange, extended inner ring width, shield, lubrication, and material with our Technical Application Consultants to check availability.

Subject to change.

Almost all bearing types can also be enhanced with GRW XTRA. Detailed information you can find on page 79 and following.

GRVV designation	[m	nensions in nm] nch]	Bear Wldth without closure	Width with extended inner ring without closure	ure in [mm] [ii Flange di without	mensions		Width with extended inner ring with closure	with o	n ch] imensions closure	Chamfer in [mm] [inch]	to ANSI/AFB/ [r	imensions acc. MA Std. 12.2 in mm] nch] Housing diameter	Load ratin DIN ISO		Closure (options ⁽³⁾	Max. limiting sp	eed ⁽⁵⁾ [min ⁻¹]
Basic symbol	d	D	В	B ₁	Flange diameter FD	Flange width FB	В ₂	B ₃	Flange diameter FD ₁	Flange width FB ₁	r _{s min} (1)	d _{a min}	D _{a max}	C [N]	C _{Or} [N]	Shield ⁽⁴⁾	Seal ⁽⁴⁾	without closure or with shield	with seal
9525A/0 <mark>02</mark>	9.525	15.875	3.967	-	-	-	3.967	-	-	-	0.25	11.05	14.35	856	435	Χ	-	35000	-
	.3750	.6250	.1562				.1562				.010	.435	.565						
3/8/002	9.525	22.225	-	-	-	-	5.558	-	-	-	0.41	11.45	20.30	2555	1129	Χ	-	30000	-
	.3750	.8750					.2188				.016	.451	.799						
3/8	9.525	22.225	5.558	-	24.613	1.575	7.142	-	24.613	1.575	0.41	11.45	20.30	2555	1129	Χ	Χ	30000	24000
	.3750	.8750	.2188		.9690	.0620	.2812		.9690	.0620	.016	.451	.799						
12700A/002	12.700	19.050	-	-	-	-	3.967	-	_	-	0.25	14.20	17.55	918	542	Χ	Χ	28000	20000
	.5000	.7500					.1562				.010	.500	.691						
12700B	12.700	22.225	7.142	-	-	-	7.142	_	_	-	0.41	14.20	20.30	1972	1144	Χ	_	28000	-
	.5000	.8750	.2812				.2812				.016	.500	.799						
1/2	12.700	28.575	6.350	-	31.115	1.575	7.938	-	31.115	1.575	0.41	15.90	26.05	5108	2413	Χ	Х	32000	21000
	.5000	1.1250	.2500		1.2250	.0620	.3125		1.2250	.0620	.016	.626	1.026						
15875A	15.875	22.225	3.967	-	-	-	3.967	_	-	-	0.25	19.05	20.30	1133	801	Χ	_	25000	-
	.6250	.8750	.1562				.1562				.010	.750	.799						
5/8	15.875	34.925	7.142	-	-	-	8.733	-	37.846	1.745	0.80	19.05	31.75	5999	3265	Χ	-	25000	-
	.6250	1.3750	.2812				.3438		1.4900	.0687	.031	.750	1.250						

⁽¹⁾ $r_{s,min}$ = minimum single bearing chamfer or maximum permissible shaft or housing fillet radius (2) Other load ratings are possible with different ball complements and non standard retainers (3) Different shields and seals are available

 ⁽⁴⁾ Bearings also available with 1 or 2 shields/seals
 (5) Limiting speed also depends on seal, material and the respective ball complement

[•] Bearings without shields or retainers are also available with recesses.

Please discuss your desired design in terms of flange, extended inner ring width, shield, lubrication, and material with our Technical Application Consultants to check availability.

[•] Subject to change.

Almost all bearing types can also be enhanced with GRW XTRA. Detailed information you can find on page 79 and following.

Spindle / angular contact bearings

Spindle bearings are single-row angular contact bearings with a nominal contact angle of 15° (C) or 25° (E). They can be subjected to both radial and (in one direction) axial loads. The direction of the axial load is shown by a "V" marking on the outer ring. GRW spindle ball bearings are suitable for applications requiring precision while carrying high load combined with high speed.

GRW spindle ball bearings are characterized by following properties:

- Manufactured quality of P4 (ABEC7) or better.
- Rings mostly made of corrosion-resistant SV 30 highgrade steel (other materials on request).
- Steel or ceramic balls.
- Solid retainer made from fiber-reinforced phenolic resin or special materials, for special applications, speed, etc...
- 15° (C) or 25° (E) contact angles as standard.
- Optionally, bearings can be paired with three pre-defined preload classes (L, M, S) or to a specific preload.
- Oil or grease lubrication.
- Open and shielded versions available.
- Cleanroom assembly, lubrication and packaging.

Open spindle ball bearings

- Standard configuration has large balls for optimum utilization of bearing geometries and a solid retainer for higher bearing capacities.
- The outer ring has only one partial shoulder remaining. This partial shoulder is necessary to prevent the bearing from separation.
- Solid outer ring guided retainer with a low profile crosssection is particularly well suited for oil injection lubrication or oil mist.

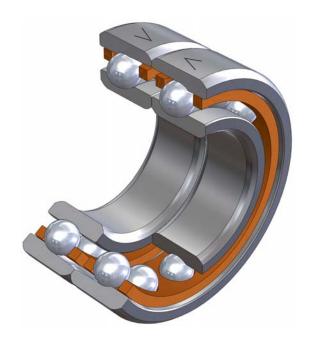
Shielded spindle bearings

- Non-contact shields do not cause any additional torque caused by the shields.
- Standard shields made of Viton (VZ) coupled with a stainless steel support shield offer excellent temperature and contamination resistance.
- A very small, closely toleranced sealing gap provides protection against dust particles.
- GRW recommends using a grease lubricant for longer life and reliability.
- Dimensionally identical to non-shielded spindle bearings but sometimes different inner geometry.
- This type of design often requires use of smaller balls that results in a lower load capacity but higher axial stiffness and speed limits (usually signified by A or B after the base type).
- Also available without shields for high-speed applications.

Handling

- GRW recommends leaving the bearing in its airtight packaging until you are ready for assembly.
- Extreme cleanliness during assembly is recommended.
- Avoid to drop or to subject the bearing to any kind of impact loading.
- Spindle bearings are designed to withstand axial loads in only one direction. This direction is identified by the "V" laser marking on the outer ring.
- Using the proper assembly tooling will prevent damage of the bearing.
- Duplex bearings labeled (DB), (DF), or (DT) are always packed in pairs and can only be used as pair in the specified configuration.
- Universally ground duplex bearings can be used in a combination of configurations, i.e. you can combine bearings from different packages or lots. These bearings may be assembled in any duplex arrangement.
- Prior to using these bearings in application GRW
 has found that a run in period at high speed helps to
 distribute the lubricant and is beneficial for the bearing.

Duplex bearings


Duplex bearings are two matched bearings that provide following performance benefits:

- Accurate bearing alignment in radial and axial directions including defined clearances and controlled stiffnesses.
- Increased system reliability.
- Higher load capacity.

Duplexing of these bearings is performed by loading each bearing with with a specified preload and accurately grinding the inner and/or outer rings until the bearing faces of both rings are flush.

Paired bearings processed this way are designed to be assembled in following configurations: back-to-back (DB), face-to-face (DF) or tandem (DT) and axially loaded to the specified or required force. Duplexed bearings are designed to provide the specified preload when the ground surfaces are accurately pressed together.

The ball bearings must be mounted according to the designation on the packaging labels or "V" markings on the outer rings.

Deep groove radial bearings:

For deep groove duplex bearings, the radial play is larger than normal to facilitate the desired contact angle, rigidity, and axial load capacity.

Unless otherwise specified, GRW duplex grinds deep groove radial bearings to a preload of 5 N and a nominal contact angle of 15°. If necessary, preload and contact angles can be adjusted to a customer's unique operating requirements.

Spindle bearings:

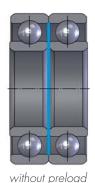
Preload and contact angle are generally standardized for spindle bearings. GRW's standard contact angles are 15° (C) or 25° (E), preload is specified as light (L), medium (M) or heavy (S). If necessary, preload and contact angles can be customized to each customer's individual operating requirements.

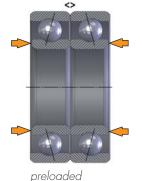
	By default, GRW uses for:	
	Deep groove radial bearings	Spindle bearings
Contact angle α	15° (C)	15° (C) or 25° (E)
Preload FV	5 N	L, M, S

However, the preload should not be specified higher than necessary as this would result in an increase of start up and running torque, which in turn would directly affect the expected life of the bearing.

To achieve, an identical fit for both bearings, Duplex bearings are sorted into two groups. The bore and outer diameters are packaged in pairs with bearings from the same group. To take full advantage of these duplexed pairs, they should also be mounted with calibrated shafts and housings (see chapter "Calibration of bore and outside diameters").

Bearing fits should be carefully selected because an interference fit on the inner or outer ring will change the preload.

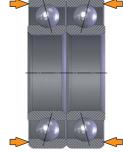




Installation and configuration of duplex bearings

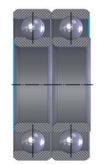
O (<>) arrangement: Back to back (designation -1 and DB for spindle bearings)

With this bearing configuration, the inner rings are designed to be clamped together. The contact angle load path between the outer ring raceway, the ball and the inner ring raceway diverge, which results in maximum stability and stiffness against any moment loading. Radial and axial loads can be taken in both directions.

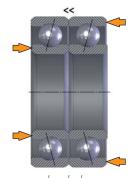


X (><) arrangement: Face to face (designation -2 and DF for spindle bearings)

With this bearing configuration, the outer rings are designed to be clamped together. The load path converges resulting in less stability and a lower stiffness against moment loading. This design more easily compensates for any misalignment of the assembly. Radial and axial loads can likewise be taken in both directions.

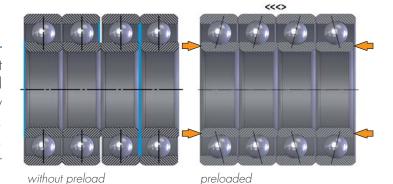

without preload

l preloaded


Tandem (>>) or (<<) arrangement (designation –3 and DT for spindle bearings)

The tandem-mounted bearing design is capable of taking a significantly higher axial load, but only in one direction. With this type of bearing, preloading and control of axial play can only be achieved by preloading against another bearing pair.

General: Bearings with these pairing configurations are packed in pairs or sets and must not be mixed.


without preload

preloaded

Universal (designation -4 and U for spindle bearings)

Universally matched bearing pairs have a significant advantage compared to the duplexed designs described above. They are individually ground in such a way that they can be assembled in various pairing configurations, e.g. X, O, or tandem configuration without any loss in performance. With the same preload, these single bearings can be interchanged without any problems.

Bearing sets

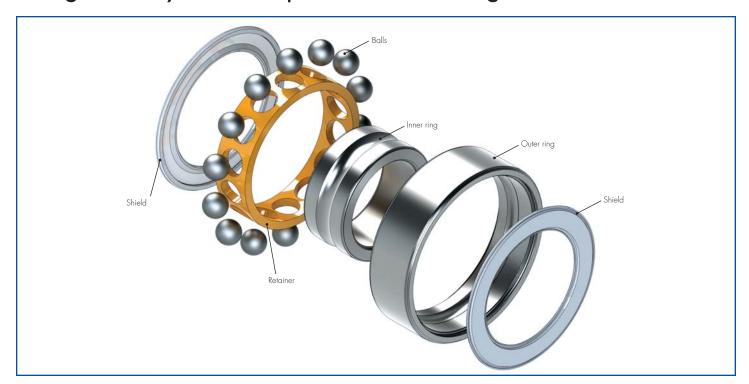
When a higher stiffness is specified, multiple duplexed bearing configurations may be used together to achieve the desired results. Depending on the application, these bearing sets can be made of universally paired bearings in X, O, or tandem configurations. The table below shows some examples of potential, configurations in more detail.

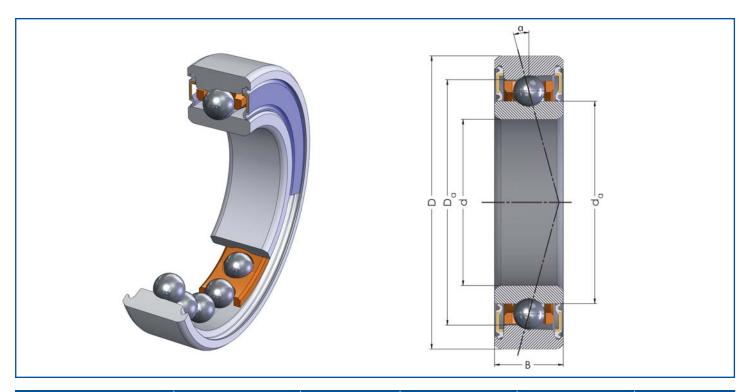
	Usual designation	Mark/ arrangement	Permissible load direction	Stiffness
(4) (4) (4) (4)	O arrangement —1 or DB	<>	axial radial	axial radial rigidity against moving torques
(4) (4)	X arrangement -2 or DF	><	axial radial	axial radial
(4) (4) (4) (4)	Tandem arrangement -3 or DT	<< or >>	radial and one direction axially	unilaterally axial radial
(4) (4) (4)	Universal -4 or U	<<>> Examples: >< or <> or >> or	axial radial	depending on the configuration
(+)	Set of bearings assem- bled from universally matched bearings	><< Examples: <>>		depending on the configuration

Superduplex bearings

Superduplex bearings are double-row deep groove radial bearings or angular contact bearings where either the inner or outer rings are integral and the remaining rings are separate to allow for assembly and proper pre-loading. (See also chapter "Special bearings" \rightarrow Superduplex bearings or Extraduplex bearings).

For Superduplex bearings, the following configurations apply:


- Designation -5
 (
 (
 (corresponds to designation -1)
- Designation -6
- X (><) configuration (corresponds to designation -2)
- **Designation -7**Tandem (corresponds to designation -3)



Designation system for spindle ball bearings

	Ball material		Ring material		Basic mark		Closure		Contact angle	Quality class		
			-		705		-		С		P4	
	HY		SS		7000		-Z		E	P4S		
	ZO		SV		795	-2Z			D = °			
					7900	-VZ						
					705 B		-2VZ					
-	steel balls	-	100Cr6	70	Series 10	-	open ball bearing	С	15°	P4	acc. to DIN 620-2	
НУ	ceramic	SS	X65Cr13	79	Series 19	-Z	one metal shield	E	25°	P4S	dimension accuracy P4, running accuracy P2,	
'''	balls made of Si ₃ N ₄	palls made SV X30CrMoN15-1 705B Modified	Modified internal design	-2Z	two metal shields		other contact angles available		acc. to DIN 620-2			
	34		orania ara			-VZ	one Viton shield	on	request, . D = 20°			
ZO	ceramic balls made of ZrO ₂					-2VZ	two Viton shields					
						All Var	riants are non-contact es					

	Retainer design	Di	iameter grading		Duplex type	ı	Preload value	Lul	oricant quantity	L	ubricants
	TA TB AC2TA		- X XB		- U DB		- L M		- %		- L G
	L2TA		XD X4 X4B X4D		DF DT		s /X				L299
TA TB	solid retainer made of fiber-reinforced phenolic resin guided by outer ring	- X	without diameter grading bore and outside diameter graded in 2 classes	U	single bearing not duplexed universally duplexed	- L M	without preload light	-	Standard grease quantitiy 20 % of free bearing volume with closed spindle bearing	-	open bearings are preserved with oil LOO1, closed bearings are greased with
TXA	quide at inner ring other retainer materials available	ХВ	bore graded in 2 classes	Bea DB	ring pair: 2 bearings in	s /X	heavy	%	adjusted lubricant quantity in [%] of free bearing		20% grease G510 as a standard
-TA -TB	on request angular contact shoulder on outer	XD X4	outside diameter graded in 2 classes bore and outside	DF	O arrangement 2 bearings in X arrangement	, ,	value in [N] if other than L, M, S.		volume	L	Oil
AC2	ring (standard) angular contact shoulder on inner	Х4В	diameter graded in 4 classes bore graded in 4 classes	DT	2 bearings in Tandem arrangement						Grease dry bearing
L2TA	0	X4D	outside diameter graded in 4 classes			beari (= un	ple: Spindle ball ng U/10 iversally paired 10 N preload)				

Spindle bearings

GRW designation	M	ain dimension [mm]	s in	Load r acc. to [ratings DIN ISO	Ball set		Limiting s	peeds*	Preload			
Basic symbols	d	[inch]	В	C _{Or}	C _r	Z	Dw [mm] [inch]	Oil [min ⁻¹]	Grease [min ⁻¹]	(L) light [N]	(M) medium [N]	(S) heavy [N]	
C bearings, open, m	etric												
SV723 C TA	3.00	10.00 .3937	4.00 .1575	170	506	8	1.588 .0625	254000	209000	5	8	10	
HYSV723 C TA	3.00	10.00 .3937	4.00 .1575	119	506	8	1.588 .0625	373000	269000	5	8	10	
SV774 C TA	4.00 .1 <i>575</i>	7.00 .2756	2.00 .0787	77	223	10	1.000	309000	255000	5	7	1	
HYSV774 C TA	4.00 .1575	7.00 .2756	2.00 .0787	54	223	10	1.000 .0394	455000	327000	5	7	1	
SV724 C TA	4.00 .1575	13.00 .5118	5.00	364	1037	8	2.381 .0937	195000	161000	5	16	3	
HYSV724 C TA	4.00 .1575	13.00 .5118	5.00	255	1037	8	2.381 .0937	287000	206000	5	16	3	
SV734 C TA	4.00 .1575	16.00 .6299	5.00 .1969	721	1594	9	2.500 .0984	157000	130000	8	24	4	
HYSV734 C TA	4.00 .1575	16.00 .6299	5.00 .1969	504	1594	9	2.500 .0984	231000	167000	8	24	4	
SV725 C TA	5.00 .1969	16.00 .6299	5.00 .1969	721	1594	9	2.500 .0984	157000	130000	8	24	4	
HYSV725 C TA	5.00 .1969	16,00 .6299	5.00 .1969	504	1594	9	2.500 .0984	231000	167000	8	24		
SV735 C TA	5.00 .1969	19.00 .7480	6.00 .2362	1277	2612	10	3.175 .1250	127000	105000	13	40	8	
HYSV735 C TA	5.00 .1969	19.00 .7480	6.00 .2362	894	2612	10	3.175 .1250	187000	135000	13	40	8	
SV786 C TA	6,00 .2362	13.00 .5118	3.50 .1378	354	895	10	1.984 .0781	175000	144000	5	14	2	
HYSV786 C TA	6.00 .2362	13,00 .5118	3.50 .1378	247	895	10	1.984 .0781	258000	186000	5	14	2	
SV786 E TA	6.00 .2362	13.00 .5118	3.50 .1378	332	856	10	1.984 .0781	149000	123000	5	14	2	
HYSV786 E TA	6.00 .2362	13.00 .5118	3.50 .1378	232	856	10	1.984 .0781	219000	158000	5	14	2	
SV786/001 C TA	6.00 .2362	13.00 .5118	5.00 .1969	354	895	10	1.984 .0781	175000	144000	5	14	2	
HYSV786/001 C TA	6.00 .2362	13.00 .5118	5.00 .1969	247	895	10	1.984 .0781	258000	186000	5	14	2	
SV726 C TA	6.00 .2362	19.00 .7480	6.00 .2362	1277	2612	10	3.175 .1250	127000	105000	13	40	8	
HYSV726 C TA	6.00 .2362	19.00 .7480	6.00 .2362	894	2612		3.175 .1250	187000	135000	13	40	8	
SV707 C TA	7.00 .2756	19.00 .7480	6.00 .2362	1277	2612	10	3.175 .1250	127000	105000	13	40	8	
HYSV707 C TA	7.00 .2756	19.00 .7480	6.00 .2362	894	2612	10	3.175 .1250	187000	135000	13		8	
SV727 C TA	7.00 .2756	22.00 .8661	7.00 .2756	1693	3511	9	3.969 .1 <i>5</i> 63	116000	95000	18	54	10	
HYSV727 C TA	7.00 .2756	22.00 .8661	7.00 .2756	1185	3511	9	3.969 .1 <i>5</i> 63	170000	122000	18	54	10	
SV788 C TA	8.00 .3150	16.00 .6299	4.00 .1575	569	1377	10	2.500 .0984	142000	117000	7	21	4	

ERVV esignation	Mc	ain dimension [mm] [inch]	s in	Load r acc. to [Ball set	Limiting	speeds*		Preloac	
asic symbols	d	D	В	C _{Or} [N]	C _r [N]	Z	Dw [mm] [inch]	Oil [min ⁻¹]	Grease [min ⁻¹]	(L) light [N]	(M) medium [N]	(S) heavy [N]
C bearings, open, m		II.										
HYSV788 C TA	8.00 .3150	16.00 .6299	4.00 .1575	398	1377	10	2.500 .0984	208000	150000	7	21	4
SV788 E TA	8.00 .3150	16.00 .6299	4.00 .1575	534	1317	10	2.500 .0984	120000	99000	7	21	4
HYSV788 E TA	8.00	16.00	4.00	374	1317	10	2.500	177000	128000	7	21	4
SV708 C TA	.3150 8.00	.6299 22.00	.1575 7.00	1693	3511	9	.0984 3.969	116000	95000	18	54	10
	.3150	.8661	.2756				.1563					
HYSV708 C TA	8.00 .3150	22.00 .8661	7.00 .2756	1185	3511	9	3.969 .1563	170000	122000	18	54	10
SV708 E TA	8.00 .3150	22.00 .8661	7.00 .2756	1589	3358	9	3.969 .1563	98000	81000	18	54	10
HYSV708 E TA	8.00	22.00	7.00	1112	3358	9	3.969	145000	104000	18	54	10
SV789 C TA	.3150 9.00	.8661 17.00	.2756 4.00	642	1471	11	.1563 2.500	131000	108000	8	23	
HYSV789 C TA	.3543 9.00	.6693	.1 <i>575</i>	450	1471	11	.0984	192000	138000	8	23	2
	.3543	.6693	.1575				.0984					
SV709 C TA	9.00 .3543	24.00 .9449	7.00 .2756	1974	3844	10	3.969 .1563	105000	86000	20	59	11
HYSV709 C TA	9.00 .3543	24.00 .9449	7.00 .2756	1382	3844	10	3.969 .1563	154000	111000	20	59	11
SV729 C TA	9.00	26.00	8.00	2737	5137	10	4.763	94000	78000	26	79	15
HYSV729 C TA	.3543 9.00	1.0236 26.00	.3150 8.00	1916	5137	10	.1875 4.763	139000	100000	26	79	1.5
SV7800 C TA	.3543 10.00	1.0236 19.00	.3150 5.00	724	1556	12	.1875 2.500	117000	97000	8	24	
	.3937	.7480	.1969				.0984					
HYSV7800 C TA	10.00 .393 <i>7</i>	19.00 .7480	5.00 .1969	507	1556	12	2.500 .0984	172000	124000	8	24	4
SV7800 E TA	10.00 .3937	19.00 .7480	5.00	680	1488	12	2.500 .0984	100000	82000	8	24	
HYSV7800 E TA	10.00	19.00	5.00	476	1488	12	2.500	147000	106000	8	24	
SV7900 C TA	.393 <i>7</i>	.7480 22.00	.1969 6.00	1500	2824	11	.0984	107000	88000	15	44	1/1/8
HYSV7900 C TA	.393 <i>7</i>	.8661 22.00	.2362 6.00	1050	2824	11	.1250 3.175	157000	113000	15	44	8
	.3937	.8661	.2362				.1250					
SV7900A E TA	10.00 .393 <i>7</i>	22.00 .8661	6.00 .2362	1407	2700	11	3.175	90000	74000	15	44	3
HYSV7900A E TA	10.00 .3937	22.00 .8661	6.00 .2362	985	2700	11	3.175	133000	96000	15	44	3
SV7000 C TA	10.00	26.00	8.00	2737	5137	10	4.763	94000	78000	26	79	1.5
HYSV7000 C TA	.3937	1.0236 26.00	.3150 8.00	1916	5137	10	.1875 4.763	139000	100000	26	79	15

^{*} The indicated speed limits are guidelines for spring-loaded single bearings with low loads; depending on the respective application, higher or lower speed limits may apply in application.

[•] Subject to change. Additional types on request!

^{**} For use with oil lubrication, these bearings are also available without shields.

• Almost all bearing types can also be enhanced with GRW XTRA. Detailed information you can find on page 79 and following.

Spindle bearings

GRVV designation	Mo	ain dimension [mm]	s in	Load racc. to [Ball set	Limiting s	peeds*	Preload		
Basic symbols	d	[inch]	В	C _{Or} [N]	C _r [N]	Ζ	Dw [mm] [inch]	Oil [min ⁻¹]	Grease [min ⁻¹]	(L) light [N]	(M) medium [N]	(S) heavy [N]
C bearings, open, m	etric											
SV7000 E TA	10.00 .393 <i>7</i>	26.00 1.0236	8.00 .3150	2568	4913	10	4.763 .1875	80000	66000	26	79	1.5
HYSV7000 E TA	10.00	26.00	8.00	1798	4913	10	4.763	118000	85000	26	79	1.5
11.	.3937	1.0236	.3150				.1875					
SV7200 C TA	10.00 .3937	30.00	9.00 .3543	3192	5597	11	4.763 .1875	83000	68000	29	86	17
HYSV7200 C TA	10.00	30.00	9.00	2235	5597	11	4.763	122000	88000	29	86	17
// // Paramanananananananananananananananananan	.3937	1.1811	.3543				.1875					
SV7200 E TA	10.00 .3937	30.00	9.00 .3543	2995	5353	11	4.763 .1875	71000	58000	29	86	1.7
HYSV7200 E TA	10.00	30.00	9.00	2097	5353	11	4.763	104000	75000	29	86	1,7
0/7001 0 TA	.3937	1.1811	.3543	70.4	1.5.40	3.4	.1875	100000	0.4000	0	0.4	
SV7801 C TA	12.00 .4724	21.00 .8268	5.00 .1969	794	1543	14	2.381 .093 <i>7</i>	103000	84000	8	24	4
HYSV7801 C TA	12.00	21.00	5.00	556	1543	14	2.381	151000	109000	8	24	
SV7801 E TA	.4724 12.00	.8268 21.00	.1969 5.00	745	1476	14	.0937 2.381	87000	72000	8	24	
3V/001 L IA	.4724	.8268	.1969	743	14/0	14	.0937	67000	72000	0	24	
HYSV7801 E TA	12.00	21.00	5.00	521	1476	14	2.381	128000	92000	8	24	
SV7901 C TA	.4724 12.00	.8268 24.00	.1969 6.00	1700	2992	12	.0937 3.175	94000	78000	15	46	
	.4724	.9449	.2362				.1250					
HYSV7901 C TA	12.00 .4724	24.00 .9449	6.00 .2362	1190	2992	12	3.175 .1250	139000	100000	15	46	,
SV7901 E TA	12.00	24.00	6.00	1595	2861	12	3.175	80000	66000	15	46	
	.4724	.9449	.2362				.1250					
HYSV7901 E TA	12.00 .4724	24.00 .9449	6.00 .2362	1117	2861	12	3.175 .1250	118000	85000	15	46	
SV7001 C TA	12.00	28.00	8.00	2590	4423	12	3.969	82000	68000	23	68	1
HYSV7001 C TA	.4724 12.00	1.1024 28.00	.3150 8.00	1813	4423	12	.1563 3.969	121000	87000	23	68	1
1113V/001 C 1A	.4724	1.1024	.3150	1013	4423	12	.1563	121000	67000	23	00	
SV7001 E TA	12.00	28.00	8.00	2430	4230	12	3.969	70000	58000	23	68	1
HYSV7001 E TA	.4724 12.00	1.1024 28.00	.3150 8.00	1701	4230	12	.1563 3.969	103000	74000	23	68	1
HISV/UUTE IA	.4724	1.1024	.3150	1701	4230	12	.1563	103000	74000	23	08	1
SV7201C C TA	12.00	32.00	10.00	3806	7652	9	5.953	77000	64000	39	118	2
HYSV7201C C TA	.4724	1.2598	.3937	0///	7652	9	.2344	114000	82000	39	110	2
HYSV/ZUICC IA	12.00 .4724	32.00 1.2598	1 0.00 .393 <i>7</i>	2664	7032	9	5.953 .2344	114000	82000	39	118	
SV7201C E TA	12.00	32.00	10.00	3571	7318	9	5.953	66000	54000	39	118	2
HYSV7201C E TA	.4724	1.2598	.3937	2500	7318	9	.2344	97000	70000	39	118	2
TITOV/ZUICE IA	12.00 .4724	32.00 1.2598	1 0.00 .393 <i>7</i>	2300	/310	9	5.953 .2344	97000	70000	39	118	
SV7802 C TA	15.00	24.00	5.00	1054	1784	18	2.381	87000	72000	9	27	
HYSV7802 C TA	.5906 15.00	.9449 24.00	.1969 5.00	738	1784	18	.093 <i>7</i>	128000	92000	9	27	
	.5906	.9449	.1969				.0937					
SV7802 E TA	15.00 .5906	24.00 .9449	5.00	989	1706	18	2.381 .093 <i>7</i>	74000	61000	9	27	

GRW designation	Mo	ain dimension [mm]	s in	Load racc. to [ratings DIN ISO		Ball set	Limiting s	peeds*		Preload	
Basic symbols	d	[inch]	В	C _{Or} [N]	C _r [N]	Z	Dw [mm] [inch]	Oil [min ⁻¹]	Grease [min ⁻¹]	(L) light [N]	(M) medium [N]	(S) heavy [N]
C bearings, open, m												
HYSV7802 E TA	15.00 .5906	24.00 .9449	5.00 .1969	692	1706	18	2.381 .093 <i>7</i>	109000	78000	9	27	
SV7902 C TA	15.00	28.00	7.00	2841	4666	13	3.969	79000	65000	24	72	1.
	.5906	1.1024	.2756				.1563					
HYSV7902 C TA	15.00	28.00	7.00	1989	4666	13	3.969	116000	84000	24	72	1
CV7000 F TA	.5906	1.1024	.2756 7.00	0445	1140	1.0	.1563	47000	F F O O O	0.4	70	1.
SV7902 E TA	15.00 .5906	28.00 1.1024	.2756	2665	4463	13	3.969 .1 <i>5</i> 63	67000	55000	24	72	1.
HYSV7902 E TA	15.00	28.00	7.00	1866	4463	13	3.969	99000	71000	24	72	1.
	.5906	1.1024	.2756				.1563					
SV7002 C TA	15.00	32.00	9.00	3970	6327	13	4.763	72000	60000	32	97	1
LIV(C) (7000 C) TA	.5906	1.2598	.3543	0770	4007	1.0	.1875	10/000	77000	0.0	0.7	7.
HYSV7002 C TA	15.00 .5906	32.00 1.2598	9.00 .3543	2779	6327	13	4.763 .1875	106000	77000	32	97	1
SV7002 E TA	15.00	32.00	9.00	3725	6051	13	4.763	62000	51000	32	97	1
3V/ 002 L 1/\	.5906	1.2598	.3543	07 23	0031	10	.1875	02000	31000	02	//	'
HYSV7002 E TA	15.00	32.00	9.00	2607	6051	13	4.763	90000	65000	32	97	1
	.5906	1.2598	.3543				.1875					
SV7202 C TA	15.00	35.00	11.00	4090	6970	13	4.763	97000	63000	30	60	1
SV7202 E TA	.5906	1.3780	.4331 11.00	3930	6650	13	.1875 4.763	85000	55000	45	90]
3V/ 2UZ E IA	15.00 .5906	35.00 1.3780	.4331	3930	0030	13	.1875	63000	33000	43	90	'
SV7803 C TA	17.00	26.00	5.00	1071	1754	18	2.381	79000	65000	9	27	
	.6693	1.0236	.1969				.0937					
HYSV7803 C TA	17.00	26.00	5.00	750	1754	18	2.381	116000	84000	9	27	
0.47000 5 74	.6693	1.0236	.1969	1005		1.0	.0937	17000	55000		67	
SV7803 E TA	17.00	26.00	5.00	1005	1677	18	2.381 .0937	67000	55000	9	27	
HYSV7803 E TA	.6693 17.00	1.0236 26.00	.1969 5.00	704	1677	18	2.381	99000	71000	9	27	
111377 000 E 171	.6693	1.0236	.1969	704	10//	10	.0937	77000	7 1000		2/	
SV7903 C TA	17.00	30.00	7.00	3137	4888	14	3.969	72000	60000	25	75	1
	.6693	1.1811	.2756		11		.1563					
HYSV7903 C TA	17.00	30.00	7.00	2196	4888	14	3.969	106000	77000	25	75	1
CV7002 F TA	.6693	1.1811	.2756	2011	1475	1.4	.1563	41000	F1000	O.E.	X N 72	DV4
SV7903 E TA	17.00 .6693	30.00	7.00 .2756	2944	4675	14	3.969 .1563	61000	51000	25	75	X
HYSV7903 E TA	17.00	30.00	7.00	2061	4675	14	3.969	90000	65000	25	75	1
, 00 2 1/1	.6693	1.1811	.2756		. 3, 3		.1563		20000	23	, ,	
SV7003 C TA	17.00	35.00	10.00	4571	6817	14	4.763	65000	54000	34	102	2
	.6693	1.3780	.3937				.1875	MARKE	LADA			
HYSV7003 C TA	17.00	35.00	10.00	3200	681 <i>7</i>	14	4.763	96000	69000	34	102	2
CV7002 F TA	.6693	1.3780	.3937	A E 7 1	A 6017	1.4	.1875	54000	14000	2.4	100	0
SV7003 E TA	17.00 .6693	35.00 1.3780	1 0.00 .3937	4571	6817	14	4.763 .1875	56000	46000	34	102	2
HYSV7003 E TA	17.00	35.00	10.00	3200	6817	14	4.763	82000	59000	34	102	2
	.6693	1.3780	.3937	0200	0017		.1875	32000	2,000		102	_

^{*} The indicated speed limits are guidelines for spring-loaded single bearings with low loads; depending on the respective application, higher or lower speed limits may apply in application.

Subject to change. Additional types on request!

^{**} For use with oil lubrication, these bearings are also available without shields.

• Almost all bearing types can also be enhanced with GRVV XTRA. Detailed information you can find on page 79 and following.

Spindle bearings

GRW designation	Mo	ain dimension [mm] [inch]	s in		ratings DIN ISO		Ball set	Limiting s	peeds*		Preload	
Basic symbols	d	D	В	C _{Or} [N]	C _r [N]	Z	Dw [mm] [inch]	Oil [min ⁻¹]	Grease [min ⁻¹]	(L) light [N]	(M) medium [N]	(S) heavy [N]
AC bearings, open, me	etric											
SV7203 C TA	17.00	40.00	12.00	5090	8730	12	5.556	85000	55000	35	70	140
0.47000.5.74	.6693	1.5748	.4724	1010	2212	1.0	.2187	75000	10000		100	0.10
SV7203 E TA	17.00	40.00	12.00	4860	8340	12	5.556 .2187	75000	49000	60	120	240
SV7804 C TA	.6693 20.00	1.5748 32.00	.4724 7.00	2772	3772	18	3.175	65000	54000	19	58	115
3V7004 C IA	.7874	1.2598	.2756	2//2	3//2	10	.1250	03000	34000	1 7	30	113
HYSV7804 C TA	20.00	32.00	7.00	1941	3772	18	3.175	96000	69000	19	58	115
	.7874	1.2598	.2756				.1250					
SV7804 E TA	20.00	32.00	7.00	2870	3865	18	3.175	56000	46000	19	58	115
	.7874	1.2598	.2756				.1250					
HYSV7804 E TA	20.00	32.00	7.00	2009	3772	18	3.175	82000	59000	19	58	115
C) (700 4 C TA	.7874	1.2598	.2756	4054	75.40	1.5	.1250	40000	40000	00	11/	0.00
SV7904 C TA	20.00 .7874	37.00 1.4567	9.00 .3543	4854	7543	15	4.763 .1875	60000	49000	39	116	232
HYSV7904 C TA	20.00	37.00	9.00	3398	7543	15	4.763	88000	63000	39	116	232
1113V/ 704 C IA	.7874	1.4567	.3543	3370	7 343	13	.1875	00000	03000	07	110	202
SV7904 E TA	20.00	37.00	9.00	4554	7214	15	4.763	51000	42000	39	116	232
	.7874	1.4567	.3543				.1875					
HYSV7904 E TA	20.00	37.00	9.00	3188	7214	15	4.763	75000	54000	39	116	232
	.7874	1.4567	.3543				.1875					
SV7004 C TA	20.00	42.00	12.00	6090	9660	14	5.556	75000	49000	35	70	140
0) (700 4 5 74	.7874	1.6535	.4724	5010	0010	7.4	.2187		10000		110	000
SV7004 E TA	20.00	42.00	12.00	5810	9210	14	5.556 .2187	66000	43000	55	110	220
SV7204 C TA	.7874 20.00	1.6535 47.00	.4724 14.00	7320	11700	13	6.350	72000	47000	45	90	180
3V/ 2U4 C IA	.7874	1.8504	.5512	7320	11700	13	.2500	72000	47 000	43	90	100
SV7204 E TA	20.00	47.00	14.00	7010	11100	13	6.350	63000	41000	70	140	280
	.7874	1.8504	.5512				.2500					
SV7805 C TA	25.00	37.00	7.00	2335	3397	19	3.175	55000	45000	17	52	104
	.9843	1.4567	.2756				.1250					
HYSV7805 C TA	25.00	37.00	7.00	1634	3397	19	3.175	81000	58000	17	52	104
0) (70.05.0.74	.9843	1.4567	.2756	(010	117/0	1.0	.1250	47000			1	0.50
SV7005 C TA	25.00	47.00	12.00	6918	11769	12	6.747	47000	39000	59	177	353
HYSV7005 C TA	.9843 25.00	1.8504 47.00	.4724 12.00	4843	11769	12	.2656 6.747	69000	50000	59	177	353
1113V/003 C IA	.9843	1.8504	.4724	4043	11709	12	.2656	09000	30000	39	1//	333
SV7005 E TA	25.00	47.00	12.00	6890	9920	16	5.556	57000	37000	55	110	220
	.9843	1.8504	.4724				.2187					

SRVV esignation	Mo	ain dimensions [mm]	s in	Load r acc. to [Ball set	Limiting s	peeds*		Preload	
asic symbols	d	[inch]	В	C _{0r} [N]	C ₋ [N]	Z	Dw [mm] [inch]	Oil [min ⁻¹]	Grease [min ⁻¹]	(L) light [N]	(M) medium [N]	(S) heavy [N]
bearings, open, ir	ıch											
SV3/16 C TA	4.763 .1875	12.700 .5000	3.967 .1562	312	913	8	2.381 .0937	195000	161000	5	14	2
HYSV3/16 C TA	4.763 .1875	12.700 .5000	3.967 .1562	218	913	8	2.381 .0937	287000	206000	5	14	2
SV3/16 D TA	4.764 .1876	12.800 .5039	3.967 .1562	293	873	8	2.381 .0937	166000	136000	5	14	2
HYSV3/16 D TA	4.765 .1876	12.900 .5079	3.967 .1562	205	873	8	2.381 .0937	244000	175000	5	14	2
SV1/4AC TA	6.350 .2500	15.875 .6250	4.978 .1960	421	1114	9	2.500 .0984	153000	126000	6	17	3
HYSV1/4A C TA	6.350 .2500	15.875 .6250	4.978 .1960	295	1114	9	2.500 .0984	225000	162000	6	17	3
SV1/2/001 C TA	12.700 .5000	28.575 1.1250	7.938 .3125	2063	4066	12	3.969 .1563	82000	68000	20	61	12
HYSV1/2/001 C TA	12.700 .5000	28.575 1.1250	7.938 .3125	1444	4066	12	3.969 .1563	121000	87000	20	61	12
C bearings, dismou	ntable, me	tric and inc	h									
<u> </u>				727	1626	0	2.500	157000	120000	0	24	
SV725 C L2T	5.00 .1969	16.00 .6299	5.00 .1969	737	1626	9	2.500 .0984 2.500	157000	130000	8	24	
SV725 C L2T HYSV725 C L2T	5.00 .1969 5.00 .1969	16.00 .6299 16.00 .6299	5.00 .1969 5.00 .1969	515	1626	9	.0984 2.500 .0984	231000	167000	8	24	L
SV725 C L2T HYSV725 C L2T SV725 D L2T	5.00 .1969 5.00 .1969 5.00 .1969	16.00 .6299 16.00 .6299 16.00 .6299	5.00 .1969 5.00 .1969 5.00	515 737	1626		.0984 2.500 .0984 2.500	231000	167000		24	2
SV725 C L2T HYSV725 C L2T SV725 D L2T HYSV725 D L2T	5.00 .1969 5.00 .1969 5.00 .1969 5.00	16.00 .6299 16.00 .6299 16.00 .6299	5.00 .1969 5.00 .1969 5.00 .1969 5.00	515 737 515	1626 1626	9	.0984 2.500 .0984 2.500 .0984 2.500	231000 134000 197000	167000 110000 142000	8 8	24 24 24	2
SV725 C L2T HYSV725 C L2T SV725 D L2T HYSV725 D L2T SV707 C L2T	5.00 .1969 5.00 .1969 5.00 .1969 5.00 .1969 7.00	16.00 .6299 16.00 .6299 16.00 .6299	5.00 .1969 5.00 .1969 5.00 .1969 5.00 .1969 6.00	515 737 515 1183	1626 1626 1626	9 9 9	.0984 2.500 .0984 2.500 .0984 2.500 .0984 3.175 .1250	231000 134000 197000 127000	167000 110000 142000 105000	8 8 8	24 24 24	2
SV725 C L2T HYSV725 C L2T SV725 D L2T HYSV725 D L2T SV707 C L2T HYSV707 C L2T	5.00 .1969 5.00 .1969 5.00 .1969 5.00 .1969 7.00 .2756 7.00	16.00 .6299 16.00 .6299 16.00 .6299 16.00 .7480	5.00 .1969 5.00 .1969 5.00 .1969 5.00 .1969 6.00 .2362 6.00	515 737 515 1183 828	1626 1626 1626 2617 2617	9 9 9 10 10	.0984 2.500 .0984 2.500 .0984 2.500 .0984 3.175 .1250 3.175 .1250	231000 134000 197000 127000 187000	167000 110000 142000 105000 135000	8 8 8 13	24 24 24 40 40	2
SV725 C L2T HYSV725 C L2T SV725 D L2T HYSV725 D L2T SV707 C L2T HYSV707 C L2T SV7000 C L2T	5.00 .1969 5.00 .1969 5.00 .1969 5.00 .1969 7.00 .2756 7.00 .2756	16.00 .6299 16.00 .6299 16.00 .6299 16.00 .7480 19.00 .7480 26.00 1.0236	5.00 .1969 5.00 .1969 5.00 .1969 5.00 .1969 6.00 .2362 6.00 .2362 8.00 .3150	515 737 515 1183 828 2550	1626 1626 1626 2617 2617	9 9 9 10 10 10	.0984 2.500 .0984 2.500 .0984 2.500 .0984 3.175 .1250 3.175 .1250 4.763 .1875	231000 134000 197000 127000 187000 94000	167000 110000 142000 105000 135000 78000	8 8 8 13 13	24 24 24 40	8
SV725 C L2T HYSV725 C L2T SV725 D L2T HYSV725 D L2T SV707 C L2T HYSV707 C L2T SV7000 C L2T HYSV7000 C L2T	5.00 .1969 5.00 .1969 5.00 .1969 5.00 .1969 7.00 .2756 7.00 .3937 10.00 .3937	16.00 .6299 16.00 .6299 16.00 .6299 16.00 .7480 19.00 .7480 26.00 1.0236	5.00 .1969 5.00 .1969 5.00 .1969 6.00 .2362 6.00 .2362 8.00 .3150	515 737 515 1183 828	1626 1626 1626 2617 2617 4906	9 9 9 10 10	.0984 2.500 .0984 2.500 .0984 2.500 .0984 3.175 .1250 3.175 .1250 4.763 .1875 4.763 .1875	231000 134000 197000 127000 187000 94000	167000 110000 142000 105000 135000 78000	8 8 8 13	24 24 24 40 40 85	4 4 8 8
SV725 C L2T HYSV725 C L2T SV725 D L2T HYSV725 D L2T SV707 C L2T HYSV707 C L2T SV7000 C L2T HYSV7000 C L2T SV1/8A D20 L2T	5.00 .1969 5.00 .1969 5.00 .1969 5.00 .1969 7.00 .2756 7.00 .2756 10.00 .3937 10.00 .3937 3.175	16.00 .6299 16.00 .6299 16.00 .6299 16.00 .7480 19.00 .7480 26.00 1.0236 7.938 .3125	5.00 .1969 5.00 .1969 5.00 .1969 6.00 .2362 6.00 .2362 8.00 .3150 8.00 .3150	515 737 515 1183 828 2550 1785	1626 1626 1626 2617 2617 4906 4906	9 9 9 10 10	.0984 2.500 .0984 2.500 .0984 2.500 .0984 3.175 .1250 3.175 .1250 4.763 .1875 4.763 .1875 1.588 .0625	231000 134000 197000 127000 187000 94000 139000 266000	167000 110000 142000 105000 78000 78000 219000	8 8 8 13 13 28 28	24 24 24 40 40 85 85	\$ 17.7 miles 17.
SV725 C L2T HYSV725 C L2T SV725 D L2T HYSV725 D L2T SV707 C L2T HYSV707 C L2T SV7000 C L2T SV7000 C L2T HYSV7000 C L2T HYSV7000 C L2T SV1/8A D20 L2T	5.00 .1969 5.00 .1969 5.00 .1969 7.00 .2756 7.00 .2756 10.00 .3937 10.00 .3937 3.175 .1250	16.00 .6299 16.00 .6299 16.00 .6299 16.00 .7480 19.00 .7480 26.00 1.0236 26.00 1.0236 7.938 .3125 7.938	5.00 .1969 5.00 .1969 5.00 .1969 5.00 .1969 6.00 .2362 6.00 .2362 8.00 .3150 2.779 .1094	515 737 515 1183 828 2550 1785 207	1626 1626 1626 2617 2617 4906 4906 609	9 9 9 10 10 10 7	.0984 2.500 .0984 2.500 .0984 2.500 .0984 3.175 .1250 3.175 .1250 4.763 .1875 4.763 .1875 1.588 .0625	231000 134000 197000 127000 187000 94000 139000 266000 392000	167000 110000 142000 105000 135000 78000 100000 219000 282000	8 8 8 13 13 28 28 5	24 24 24 40 40 85 85 8	2 2 2 8 8 8 8 17 7 17 17 17 17 17 17 17 17 17 17 17 1
SV725 C L2T HYSV725 C L2T SV725 D L2T HYSV725 D L2T SV707 C L2T HYSV707 C L2T SV7000 C L2T HYSV7000 C L2T SV1/8A D20 L2T	5.00 .1969 5.00 .1969 5.00 .1969 5.00 .1969 7.00 .2756 7.00 .2756 10.00 .3937 10.00 .3937 3.175	16.00 .6299 16.00 .6299 16.00 .6299 16.00 .7480 19.00 .7480 26.00 1.0236 7.938 .3125	5.00 .1969 5.00 .1969 5.00 .1969 6.00 .2362 6.00 .2362 8.00 .3150 8.00 .3150 2.779 .1094	515 737 515 1183 828 2550 1785	1626 1626 1626 2617 2617 4906 4906	9 9 9 10 10 10	.0984 2.500 .0984 2.500 .0984 2.500 .0984 3.175 .1250 3.175 .1250 4.763 .1875 4.763 .1875 1.588 .0625	231000 134000 197000 127000 187000 94000 139000 266000	167000 110000 142000 105000 78000 78000 219000	8 8 8 13 13 28 28	24 24 24 40 40 85 85 8 8	2 2 8 8 17

^{*} The indicated speed limits are guidelines for spring-loaded single bearings with low loads; depending on the respective application, higher or lower speed limits may apply in application.

[•] Subject to change. Additional types on request!

^{**} For use with oil lubrication, these bearings are also available without shields.

• Almost all bearing types can also be enhanced with GRW XTRA. Detailed information you can find on page 79 and following.

Spindle bearings

GRVV Jesignation	Mo	ain dimension [mm]	s in	Load r acc. to [ratings DIN ISO		Ball set	Limiting s	peeds*		Preload	
Basic symbols	d	[inch]	В	C _{0r} [N]	C _r [N]	Z	Dw [mm] [inch]	Oil [min ⁻¹]	Grease [min ⁻¹]	(L) light [N]	(M) medium [N]	(S) heavy [N]
C bearings, sealed, r	netric											
SV725A-2VZ C TA	5.00 .1969	16.00 .6299	5.00	647	1305	12	1.984 .0781	194000**	155000	7	20	40
HYSV725A-2VZ C TA	5.00	16.00 .6299	5.00	453	1305	12	1.984	290000**	194000	7	20	40
SV725A-2VZ E TA	.1969 5.00	16.00	.1969 5.00	607	1248	12	.0781 1.984	165000**	132000	7	20	4
SV788B-2VZ C TA	.1969 8.00	.6299 16.00	.1969 4.00	723	1374	13	.0781 1.984	174000**	139000	7	21	4
HYSV788B-2VZ C TA	.3150 8.00	.6299 16.00	.1575 4.00	506	1374	13	.0781 1.984	261000**	174000	7	21	4
SV708B-2VZ C TA	.3150 8.00	.6299 22.00	.1575 7.00	1298	2625	10	.0781 3.175	144000**	115000	13	40	8
HYSV708B-2VZ C TA	.3150	.8661 22.00	.2756 7.00	909	2625	10	.1250 3.175	216000**			40	8
	8.00 .3150	.8661	.2756				.1250		144000	13	-	
SV708B-2VZ E TA	8.00 .3150	22.00 .8661	7.00 .2756	1218	2510	10	3.175 .1250	122000**	98000	13	40	8
HYSV708B-2VZ E TA	8.00 .3150	22.00 .8661	7.00 .2756	853	2510	10	3.175 .1250	183000**	122000	13	40	8
SV709A-2VZ C TA	9.00 .3543	24.00 .9449	7.00 .2756	1493	2822	11	3.175 .1250	128000**	102000	14	43	8
HYSV709A-2VZ C TA	9.00 .3543	24.00 .9449	7.00 .2756	1045	2822	11	3.175 .1250	191000**	128000	14	43	8
SV7800A-2VZ C TA	10.00	19.00 .7480	5.00	876	1487	15	1.984 .0781	143000**	114000	8	23	4
HYSV7800A-2VZ C TA	.393 <i>7</i> 10.00 .393 <i>7</i>	19.00	.1969 5.00	613	1487	15	1.984	215000**	143000	8	23	
SV7900B-2VZ C TA	10.00	.7480 22.00	.1969 6.00	1173	2047	13	2.500	128000**	102000	11	33	ć
HYSV7900B-2VZ C TA	.393 <i>7</i>	.8661 22.00	.2362 6.00	821	2047	13	.0984 2.500	192000**	128000	11	33	6
SV7000A-2VZ C TA	.3937	.8661 26.00	.2362 8.00	2030	3879	10	.0984 3.969	115000**	92000	20	60	12
SV7000A-2VZ E TA	.3937	1.0236 26.00	.3150 8.00	1905	3710	10	.1563 3.969	98000**	78000	20	60	12
HYSV7000A-2VZ E TA	.3937	1.0236 26.00	.3150 8.00	1334	3710	10	.1563 3.969	147000**	98000	20	60	12
	.3937	1.0236	.3150				.1563					7
SV7901A-2VZ C TA	1 2.00 .4724	24.00 .9449	6.00 .2362	1478	2329	16	2.500 .0984	115000**	92000	12	35	
HYSV7901A-2VZ C TA	12.00 .4724	24.00 .9449	6.00 .2362	1035	2329	16	2.500 .0984	173000**	115000	12	35	7
SV7901A-2VZ E TA	12.00 .4724	24.00 .9449	6.00 .2362	1387	2227	16	2.500 .0984	98000**	79000	12	35	7
HYSV7901A-2VZ E TA	12.00 .4724	24.00 .9449	6.00 .2362	971	2227	16	2.500 .0984	147000**	98000	12	35	7
SV7001B-2VZ C TA	12.00 .4724	28.00 1.1024	8.00 .3150	2328	3603	16	3.175	101000**	80000	18	55	11
HYSV7001B-2VZ C TA	12.00 .4724	28.00 1.1024	8.00 .3150	1141	3603	16	3.175	151000**	101000	18	55	11
SV7001B-2VZ E TA	12.00	28.00	8.00	2184	3446	16	3.175	85000**	68000	18	55	11

GRVV designation	Mo	ain dimension [mm] [inch]	is in		ratings DIN ISO		Ball set	Limiting	speeds*		Preload	
Basic symbols	d	D	В	C _{Or}	C _r [N]	Ζ	Dw [mm] [inch]	Oil [min ⁻¹]	Grease [min ⁻¹]	(L) light [N]	(M) medium [N]	(S) heavy [N]
AC bearings, sealed, 1	metric											
HYSV7001B-2VZ E TA	12.00 .4724	28.00 1.1024	8.00 .3150	1070	3446	16	3.175 .1250	128000**	85000	18	55	11
SV7201B-2VZ E TA	12.00	32.00	10.00	3034	5373	11	4.763	80000**	64000	29	86	17
	.4724	1.2598	.3937				.1875					
HYSV7201B-2VZ E TA	12.00	32.00	10.00	1487	5373	11	4.763	120000**	80000	29	86	17
	.4724	1.2598	.3937				.1875					
SV7902A-2VZ C TA	15.00	28.00	7.00	2359	3586	16	3.175	95000**	76000	18	55	11
HYSV7902A-2VZ C TA	.5906 15.00	1.1024 28.00	.2756 7.00	1651	3586	16	.1250 3.175	143000**	95000	18	55	11
113V/9UZA-ZVZ C IA	.5906	1.1024	.2756	1031	3360	10	.1250	143000	93000	10	33	'
SV7902A-2VZ E TA	15.00	28.00	7.00	2213	3430	16	3.175	81000**	65000	18	55	1.
	.5906	1.1024	.2756				.1250					
HYSV7902A-2VZ E TA	15.00	28.00	7.00	1549	3430	16	3.175	121000**	81000	18	55	11
	.5906	1.1024	.2756				.1250					
SV7002A-2VZ C TA	15.00	32.00	9.00	333 <i>7</i>	5125	15	3.969	87000**	70000	26	79	13
	.5906	1.2598	.3543				.1563		. —			
HYSV7002A-2VZ C TA	15.00	32.00	9.00	2336	5125	15	3.969	131000**	87000	26	79	1.
SV7002A-2VZ E TA	.5906 15.00	1.2598 32.00	.3543 9.00	3131	4902	15	.1563 3.969	74000**	59000	26	79	1.
3V/00ZA-ZVZ L IA	.5906	1.2598	.3543	3131	4902	13	.1563	74000	39000	20	/ 9	1.
HYSV7002A-2VZ E TA	15.00	32.00	9.00	2192	4902	15	3.969	111000**	74000	26	79	1.
	.5906	1.2598	.3543	2.,,	1,02		.1563		, 1000			
SV7903A-2VZ C TA	17.00	30.00	7.00	2402	3554	16	3.175	88000**	70000	18	55	
	.6693	1.1811	.2756				.1250					
HYSV7903A-2VZ C TA	17.00	30.00	7.00	1682	3554	16	3.175	132000**	88000	18	55	1
	.6693	1.1811	.2756				.1250					
SV7903A-2VZ E TA	17.00	30.00	7.00	2254	3399	16	3.175	75000**	60000	18	55	1
HYSV7903A-2VZ E TA	.6693	1.1811	.2756	1570	3399	16	.1250	112000**	75000	18	55	1
H121/4034-517 E IA	17.00 .6693	30.00	7.00 .2756	1578	3399	10	3.175 .1250	112000""	75000	18	33	ı
SV7003-2VZ C TA	17.00	35.00	10.00	4415	6654	14	4.763	65000**	54000	34	102	20
017 000 272 0 171	.6693	1.3780	.3937	1110			.1875	00000	0 1000		102	
HYSV7003-2VZ C TA	17.00	35.00	10.00	3091	6654	14	4.763	96000**	69000	34	102	20
	.6693	1.3780	.3937				.1875					
SV7003-2VZ E TA	17.00	35.00	10.00	4143	6363	14	4.763	56000**	46000	34	102	20
	.6693	1.3780	.3937	1/1/2		19	.1875	X sold	BAR		MM	VA
HYSV7003-2VZ E TA	17.00	35.00	10.00	2900	6363	14	4.763	82000**	59000	34	102	20
CV700 4 4 0 1 7 0 T 4	.6693	1.3780	.3937	2010	EDO	1./	.1875	70000	E4006	707	0.1	7
SV7904A-2VZ C TA	20.00 .7874	37.00 1.4567	9.00 .3543	3868	5394	16	3.969 .1563	70000	56000	27	81	10
HYSV7904A-2VZ C TA	20.00	37.00	9.00	2708	5394	16	3.969	105000	70000	27	81	10
THOW YOUNGER ZVE CIA	.7874	1.4567	.3543	2/00	3074	10	.1563	103000	70000	2/	01	10
SV7005A-2VZ C TA	25.00	47.00	12.00	7909	10661	17	5.556	56000	44000	53	160	3:
	.9843	1.8504	.4724		The		.2187	HILL				
HYSV7005A-2VZ C TA	25.00	47.00	12.00	5536	10661	17	5.556	83000	56000	53	160	32
	.9843	1.8504	.4724				.2187					

^{*} The indicated speed limits are guidelines for spring-loaded single bearings with low loads; depending on the respective application, higher or lower speed limits may apply in application.

[•] Subject to change. Additional types on request!

^{**} For use with oil lubrication, these bearings are also available without shields.

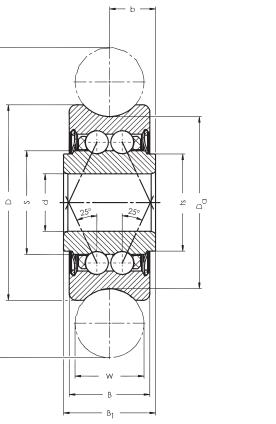
• Almost all bearing types can also be enhanced with GRW XTRA. Detailed information you can find on page 79 and following.

Profiled rollers

Profiled rollers are double-row ball bearings; which means they are able to accept axial loads in both directions, as well as high radial loads. Usually, the contact surface is shaped like a Gothic arch; the contact surface and shaft touch each other in two locations.

On request, other contour surface designs are available (e.g. V groove, spherical outer ring, etc.).

Inner and outer rings can be made of chrome steel 100Cr6 or corrosion-resistant chrome steels X65Cr13 or X30CrMoN 15-1. Balls can be made of chrome steel 100Cr6, X65Cr13 or ceramic.


GRW profiled rollers have non-contact shields. On request, contact seals (e.g. Teflon[®], NBR) are available as an alternative. The rollers are lubricated for life and are also available with FDA-approved and/or autoclavable lubricants.

For further information please contact your nearest GRW Sales Representative.

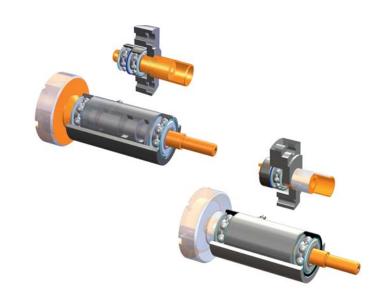
Basic symbol	Drawing no.	d	D _a	D	D ₁	W	В	В	b	S
687/603282-2RZ	604623	5	_	17	27	6	7	8	4	9
687/603282-2Z	603282	5	-	17	27	6	7	8	4	9
687/602057-2Z	602057	5	-	17	25	5	7	8.5	5	9
687/601938-2Z	601938	5	_	17	27	6	7	8.5	5	9
687/601935-2Z	602055	5	-	16	22	4	7	8.5	5	9
687/601935-2Z	601935	5	-	16	22	4	7	8.5	5	9
608/602030-2ZF	604976	8	-	24	34	6	11	11	5.5	11.8
608/602030-2ZF	602030	8	-	24	34	6	11	11	5.5	11.8
608/602024-2ZF	602024	8	-	24	37	8	11	12.5	7	11.8
608/601947-2ZF	602053	8	-	24	34	6	11	12.5	7	11.8
608/601947-2ZF	601947	8	-	24	34	6	11	12.5	7	11.8
6201/604947-2Z	604947	12	_	35	51.3	10	15.9	15.9	7.95	18.28

Subject to change.

Profile roller with inner ring extended on both sides

Profile roller with inner ring extended on one side

Bearing units


Bearing units are pre-mounted assemblies, comprising of at least one ball bearing, shaft or housing, optional spacers, shims or spring washers.

GRW assembles the stacked components in bearing units primarily by using adhesives. Backlash free bearing units are produced cost effectively by precisely gluing the bearings under an axial pre-load. GRW has engineered special gluing equipment and techniques to ensure high accuracy and strength.

When using GRW bearing units, customers will profit from the following benefits:

- Cost advantages by eliminating possibility of improper customer assembly.
- Pre-mounted units are easier to handle than single bearings.
- At GRW the bearings are mounted in a clean room under optimum conditions.

• Depending on the application requirements, other functional elements may be integrated in the bearing units, for example springs and seals.

Subject to change.

Thin-section bearings

Thin-section bearings are bearings with very thin ring cross-sections (light ISO dimension series 67/68) or bearings with identical cross-sections, independent of their bore diameter (inch series: Extra Thin Series, Thin Series).

In addition to their small footprint and low weight, they are characterized by low torque and high rigidity.

Thin-section bearings are available in the following versions: open (standard), with closures, with an extended inner ring, with a flanged outer ring and as an angular contact or full-complement bearing at a maximum outside diameter of 40 mm.

The closures are available in -2Z and -2TS versions.

By default, thin-section bearings are all ABEC5. Please inquire about other available versions (e.g. Superduplex) ABEC7, and ABEC9.

Basic symbol	d	l	D		I	В	r _s	min	d	min	da	max	Da	max
busic symbol	[mm]	[inch]	[mm]	[inch]	[mm]	[inch]	[mm]	[inch]	[mm]		[mm]	[inch]	[mm]	[inch]
15875A	15.875	.625	22.225	.875	3.967	.156	0.25	.010	16.9	.665	17.9	.705	20.6	.811
15875A-2Z	15.875	.625	22.225	.875	4.978	.196	0.25	.010	16.9	.665	17.9	.705	20.6	.811
15875A-2TS	15.875	.625	22.225	.875	4.978	.196	0.25	.010	16.9	.665	17.2	.677	20.6	.811
19050A	19.050	.750	25.400	1.000	3.967	.156	0.25	.010	20.1	.791	21.1	.831	23.7	.933
19050A-2Z	19.050	.750	25.400	1.000	4.978	.196	0.25	.010	20.1	.791	21.1	.831	23.7	.933
19050A-2Z	19.050	.750	25.400	1.000	4.978	.196	0.25	.010	20.1	.791	20.4	.803	23.7	.933
22225A	22.225	.875	28.575	1.125	3.967	.156	0.25	.010	23.3	.917	24.3	.957	26.9	1.059
22225A-2Z	22.225	.875	28.575	1.125	4.978	.196	0.25	.010	23.3	.917	24.3	.957	26.9	1.059
22225A-2TS	22.225	.875	28.575	1.125	4.978	.196	0.25	.010	23.3	.917	23.6	.929	26.9	1.059
26988A	26.988	1.063	33.338	1.313	3.967	.156	0.25	.010	28.1	1.106	29.1	1.146	31.7	1.248
26988A-2Z	26.988	1.063	33.338	1.313	4.978	.196	0.25	.010	28.1	1.106	29.1	1.146	31.7	1.248
26988-2TS	26.988	1.063	33.338	1.313	4.978	.196	0.25	.010	28.1	1.106	28.4	1.118	31.7	1.248

Hybrid and full ceramic ball bearings

Conventional ball bearings are limited when operating at high temperatures, in a vacuum, or in a corrosive environment. All ceramic bearings have proven to be ideally suited for these extreme applications.

Zirconium oxide (ZrO_2) and silicon nitride (Si_3N_4) are typical materials used in all ceramic bearings. Both provide excellent corrosion and temperature resistance as well as other mechanical properties.

Material properties:

Properties	Unit	Si ₃ N ₄ HY	ZrO ₂ ZO
Density	g/cm³	3.2	6.05
Hardness	Rc	> 75	> 69
E-module	GPa	320	200
Poisson coefficient		0.26	0.2
Linear expansion coefficient	x10-6 K-1	2.9	10
Max. temperature	°C	800	600
Corrosion resistance		very good	good
Electrical conductivity		insulator	insulator

High chemical resistance

All ceramic ball bearings have specific advantages for applications with mixed-torque because they remain operative for a longer period of time than conventional steel bearings even in the case of lube deprivation.

Corrosion resistance

All ceramic bearings resist cold micro welding to other materials which allows for particularly low adhesive wear. Certain applications make use of conventional bearings almost impossible. For example: corrosive material resistance of all ceramic bearings allows for usage in chemical applications.

Thermal expansion

Full ceramic bearings will remain dimensionally stable even at high temperature fluctuations.

Non-magnetic and current insulation

The non-magnetic properties of ceramic materials prevent interference with magnetic fields and furthermore acts as an insulator preventing current flow.

Special ball bearings

GRW develops and produces a complete range of custom bearing options.

Superduplex bearings

Superduplex bearings are also known as double row deepgroove ball bearings or angular contact ball bearings featuring split inner or outer rings. One of the ring sets, either outer or inner, consist of a double row integral set of raceways.

This compact design permits easy handling and assembly. The inner or outer split rings are paired according to customer specifications ensuring that GRW bearings will meet the required axial preload.

Extraduplex bearings are double-row deep groove radial bearings or angular contact ball bearings with a split inner or outer ring. One floating ring is accurately preloaded and then laser-welded in place. This style of bearing prevents radial offset or changes in axial preload during assembly.

Tandemduplex bearings are designed with double-row deepgroove bearings. The raceways are extremely close to each other (in the micron range). These bearings are designed to handle both radial loads and axial loads in one direction by ensuring that the load is evenly distributed to all balls.

GRW can produce single or double-row bearings with a spherical faced or grooved outer ring and also can provide molded and plastic rubber type assemblies.

Integrated shaft bearings

Bearing and shaft can be combined to provide an integrated assembly. In this design the raceway is ground on the shaft and the bearing assembly is delivered completely assembled ready to use.

Bearing / housing assemblies

For these special designs, the raceway of the outer ring is ground directly into the housing. Complex housings, flanges and threaded mounting holes maintain the tight tolerances necessary for proper installation.

Precision components

GRW manufactures precision spacers and precision components that incorporate threads, steps, grooves, bores, etc. to tolerances in the micron (μ) range.

Coated bearings

Sometimes the use of conventional lubricants is impossible especially in applications where there is exposure to extremely high or low temperatures, ultra-high vacuum, or in close proximity to optical systems.

The solution in these cases may be special coatings with gold, silver, MoS_2 , or Teflon[®]. These thin layers act as a **dry film lubricant**. Development of this technology has made applications possible even at temperatures of -270 °C to +400 °C or in a high vacuum.

Protection against wear is also an advantage of using thin coated bearings. Raceways, balls, or outer surfaces can be thinly coated to meet each application's requirements. Possible uses for these types of coatings are profiled rollers, paper cutting blade wheels, bearings used in chemical or food processing industry, medical instruments, aerospace and vacuum technology.

As each coating can be applied by a variety of technologies, GRW will work with each customer to select the optimum coating process to meet your application requirements.

ENHANCING PERFORMANCE!

XTRAlube / Lubrication for longer life
XTRAlon / The Premium retainer material

XTRA Enhancing Performance!

In order to successfully meet the challenges of the market, our products are being continuously developed and their performance improved, based on the latest innovations from GRW.

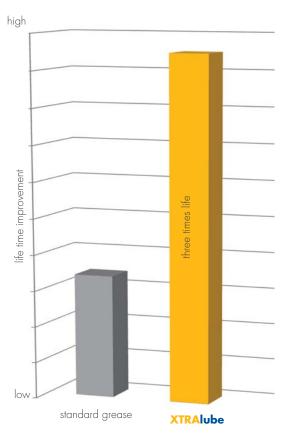
Developments that we have achieved in the areas of product design, ball bearing steels, retainer design and materials, lubricants and surface coatings are the basis for the technological leadership the company has today.

With GRW XTRA, we are not so much reinventing the ball bearing but using our expertise to improve performance levels in terms of running noise, service lifetime and speed for instance. The ball bearing designed by GRW to your individual requirements acquires superior performance due to XTRA.

XTRA - the GRW solution for your challenges!

For more information about XTRA contact our sales engineers. They will be glad to advise you.

> worldwide: +49 (0) 93 65/819 - 0 TO USA: +1 (860) 769 3252


XTRAlube

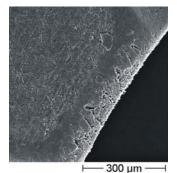
For the toughest operating conditions in special applications, GRW relies on developing its own lubricants, which have the potential for significantly longer life: XTRAlube.

The new XTRAlube developed in the GRW laboratory delivers outstanding results both in the test criteria which GRW considers crucial and in the various functional tests. It also has the special ability to adhere to the contact surfaces of the inner ring and outer ring much better than standard greases.

In the specific case of ball bearings for dental turbines this property is particularly sought after, because the air extracted from the turbine flows partly through the ball bearings and transports the grease reservoir to the outside very rapidly. This leads to a situation of inadequate lubrication, which is responsible for the failure of the ball bearings.

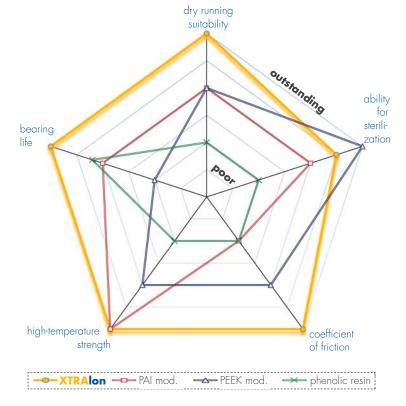
Average value at life test on the GRW test bench Orakel III. Initially lubricated and no relube during test.

80 I


GRW HIGH-PRECISION BALL REARING

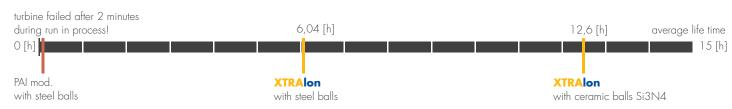
XTRAIon

Our premium material is designed for the most demanding requirements in terms of friction, thermal stability and wear. The unique production method involving the chemical binding of solid lubricant to the base polymer polyamidimide (PAI) creates a homogeneous, dense fabric, which offers little opportunity for attack by the superheated steam during autoclaving.


The fine distribution of solid lubricant and the chemical bond to the base material means that the exceptional property of dry-running suitability is obtained, even in extreme applications where idle speed of n \times dm > 1.000.000 mm/min are the norm. In internal tests on GRW's own test rigs, service lifetimes of up to 15 hours were attained with completely dry ball bearings. All conventional retainer materials fail after only a few minutes in the same test.

The SEM images show the surfaces of **XTRAIon** and PAI mod. after 1.000 cycles of sterilization by steam under pressure. It can be clearly seen that the surface structure of **XTRAIon** is preserved, while the PAI mod. has a very jagged surface.

SEM image: PAI mod.


→ Fig. 3 SEM image: XTRAlon

Performance overview of standard retainer materials compared to GRVV **XTRAIon** used in high-speed dental handpieces.

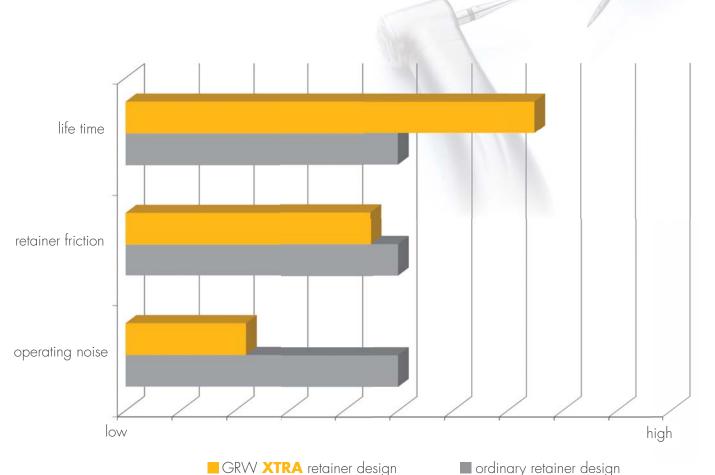
Life time test with XTRAlon modified ball bearings without initial lubrication:

Effect of the retainer material to the life time of dental turbines without any initial lubrication tested on Orakel III test bench (n=350.000 min⁻¹).

Your Success with GRW XTRA bearings:

As part of a development project for a major GRW customer, extremely high performance improvements over the current product design were obtained, in conjunction with XTRA developments. As part of this, parameters such as running noise, product service life and idle speed were tested on GRW internal test rigs and optimized by applying XTRA advancements.

GRW customers benefit from our XTRA bearings:

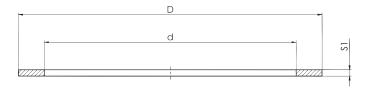

- Silent bearings ensure a more pleasant work in the dental field and any other application
- The high product reliability of GRW XTRA bearings ensures longer life time and reduces costs.
- Higher idle speed.
- GRW XTRA makes ball bearings resistant and more durable despite poor care, extreme temperatures and highest speeds.

Our benchmarks and results using XTRA products:

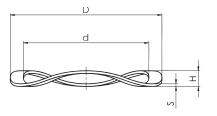
Measurable target	2013	2014 XTRA	Improvement
Noise [dB(A)]	70	65	- 29% *
Life time [h]	90	260	+ 189%
Early failure [h]	> 50	> 120	+ 140%
Idle speed [rpm]	360.000	370.000	+ 3%

Improvement of a high speed handpiece of a GRW customer.

 * Decrease by 10 dB is a reduction of the noise level by 50% (logarithmic scale).



Effect of retainer design on the running properties of high-speed dental ball bearings.


Accessories

Shims AS

For production engineering purposes, shims are often used to balance the accumulation of tolerances (tolerance chains) and axial tolerances.

GRW spring washers are made of corrosion-proof 1.4310 (AISI 301) spring wire. They are heat-treated, burr-free, and have an extremely fine surface finish

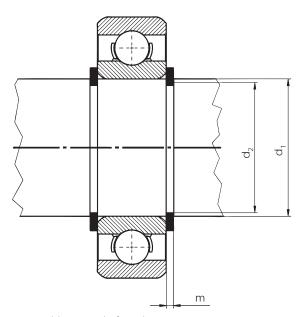
Spring washers WF

Spring washers are used for defined axial preloading of bearings, particularly for miniature and small ball bearings. The manufacture of these spring washers includes cutting and punching processes. Through a subsequent finishing process, they can be calibrated to provide highly accurate preload tolerances for special applications.

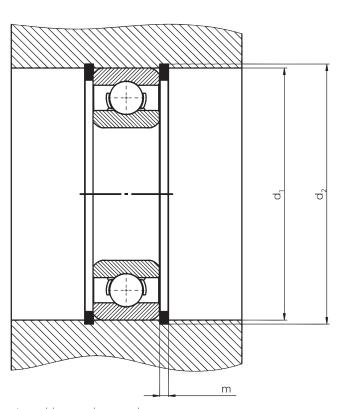
GRW spring washers are made of corrosion-proof 1.4310 (AISI 301) spring wire. They are heat-treated, burr-free, and have an extremely fine surface finish. Our spring washers are designed with 3 waves ensuring even support of the bearing during axial preloading.

	ı	Dimensions [mm]			
Shims		Spring washers	1	Compatib	le sizes
d x D	s	(d x D x H x s)	Spring constant [N/mm]	on shafts	in housings
AS 1.55 x 2.50	0.15	-	_	68/1,5, 69/1,5	-
_	-	WF 1.60 x 2.90 x 0.40 x 0.06	50.0	-	-
_	- 0.10	WF 1.90 x 2.80 x 0.50 x 0.08	60.0	_	_
AS 2.00 x 4.30	0.16 0.20	-	_	-	-
AS 2.25 x 3.20	0.08 0.10	WF 2.15 x 3.10 x 0.50 x 0.08	54.9	682, 692, 5/64	-
AS 2.80 x 3.90	0.08 0.10	WF 2.70 x 3.80 x 0.50 x 0.08	52.0	60/2,5, 68/2,5, 69/2,5, 3/32	68/1,5,691,1191
AS 3.05 × 4.50	0.10 0.16 0.20	_	-	_	_
AS 3.30 × 4.40	0.08 0.10 0.12	WF 3.20 x 4.30 x 0.50 x 0.10	32.5	623, 683, 693, 1/8A, 1/8B, 3175,1/8A/6, 1/8B/083	-
AS 3.50 x 5.00	0.08	-	_	-	-
AS 3.80 x 4.90	0.08 0.10 0.12	WF 3.70 x 4.80 x 0.55 x 0.10	32.0	-	682, 69/1,5
AS 4.05 x 5.50	0.10 0.20	-	_	_	_
AS 4.30 x 5.85	0.10 0.12 0.15	WF 4.20 x 5.75 x 0.65 x 0.12	40.0	604 <u>,</u> 624 <u>,</u> 634 <u>,</u> 684 <u>,</u> 694 <u>,</u> 3967	68/2,5, 692
AS 4.90 x 6.20	0.10 0.12 0.15	WF 4.80 x 6.10 x 0.60 x 0.12	37.0	3/16, 4763A, 4763B	5/64, 3175
AS 5.20 x 6.75	0.15	_	_	-	_
AS 5.30 x 6.85	0.10 0.12 0.15	WF 5.20 x 6.75 x 0.65 x 0.12	22.0	625, 635, 685, 695	683, 69/2,5
AS 5.50 x 8.50	0.40	-	_	-	-
AS 6.30 × 7.85	0.12 0.15 0.18	WF 6.20 × 7.75 × 0.70 × 0.15	38.0	626, 686, 696	60/2,5,693,3/32, 1/8A,3967,4763A
AS 6.70 x 9.40	0.10	_	-	- ///	
AS 7.30 x 8.80	0.12 0.15 0.18	WF 7.20 x 8.70 x 0.90 x 0.15	28.5	607, 627, 687, 697	684
_	-	WF 7.20 x 12.00 x 1.55 x 0.13	41.8	607, 627	6350B, 7938, 1/8B/083
AS 8.30 x 9.80	0.10 0.15 0.18 0.20	WF 8.20 × 9.70 × 0.85 × 0.18	26.0	608, 688, 698, 7938	623
AS 9.30 x 10.80	0.15 0.18 0.20	WF 9.20 x 10.70 x 1.15 x 0.18	22.0	609, 629, 689, 699	685, 694
AS 10.30 × 11.80	0.18 0.20 0.22	WF 10.20 x 11.70 x 1.05 x 0.20	18.5	6000, 6800, 6900,3/8	604
_	-	WF 10.50 x 15.80 x 1.85 x 0.25	77.0	6000	625, 634
AS 11.30 × 12.80	0.18 0.20 0.22	WF 11.20 x 12.70 x 1.30 x 0.20	16.0	- 6	624, 686, 695
AS 12.30 x 13.80	0.20 0.22 0.25	WF 12.20 × 13.70 × 1.30 × 0.22	20.0	- /383	687
AS 13.30 x 14.80	0.20 0.22 0.25	WF 13.20 × 14.70 × 1.30 × 0.23	13.0	-2.7975	696
AS 14.35 x 15.80	0.22 0.25 0.30	WF 14.20 x 15.65 x 1.55 x 0.25	17.0		625, 634, 688, 1/4A
AS 15.35 x 16.80	0.22 0.25 0.30	WF 15.20 × 16.65 × 1.55 × 0.25	14.5	A SEEDEN	689, 697
AS 16.00 x 22.00	0.10	WF 15.80 x 21.80 x 1.60 x 0.20	10.0	VIII-A	3/8
AS 16.40 x 18.80	0.25 0.30 0.35	WF 16.20 x 18.55 x 2.15 x 0.30	28.5		607, 626, 635, 6800, 698, 1/4

Material 1.4310 (AISI 301). Before planning to use shims and spring washers, please check on availability. Other sizes on request. Subject to change. Minimum quantity 100 pieces.



Accessories

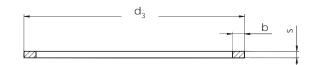

Retaining rings – (shaft circlips WSR, bore retaining rings BSR)

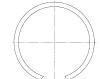
Retaining rings are precision engineered components designed to be applied on shafts or in bores providing a shoulder that accurately positions, locates and retains parts of an assembly. They are especially useful with small and evenly distributed axial and radial loads. It is important to ensure that the face of the retaining ring does not touch the edge radius of the bearing. If the face does touch the radial edge, we recommend that you use our shims in conjunction with our retaining rings.

GRW retaining rings are constructed from cold-drawn spring wire 1.4310 (AISI 301), which exhibits a constant cross section. They are corrosion-proof and free of any scale or burrs.

Assembly using shaft circlips

Assembly using bore circlips





Shaft circlips

Туре			Dimens	sions [mm]		
	Shaft		Split lock		G	ro
	d ₁	d ₃ max.	b ± 0.10	s ± 0.02	d₂ - 0.05	m + 0.03
WSR 3	3	2.60	0.50	0.30	2.70	0.33
WSR 4	4	3.60	0.50	0.30	3.70	0.33
WSR 5	5	4.50	0.70	0.40	4.60	0.44
WSR 6	6	5.45	0.70	0.40	5.60	0.44
WSR 7	7	6.45	0.70	0.40	6.60	0.44
WSR 8	8	7.35	0.90	0.50	7.50	0.55
WSR 9	9	8.30	0.90	0.50	8.50	0.55
WSR 10	10	9.25	0.90	0.50	9.50	0.55

Material 1.4310 (AISI 301). Subject to change. 1000 pieces per pack.

Bore circlips

	I.		sions [mm]	l	
	d	A Committee of the Comm	 •	_	ro m
u ₁	min.	± 0.10	± 0.02	- 0.05	+ 0.03
4	4.40	0.50	0.30	4.30	0.33
5	5.45	0.50	0.30	5.30	0.33
6	6.45	0.50	0.30	6.30	0.33
7	7.50	0.50	0.30	7.30	0.33
8	8.60	0.70	0.40	8.40	0.44
9	9.60	0.70	0.40	9.40	0.44
10	10.65	0.70	0.40	10.40	0.44
11	11.65	0.70	0.40	11.40	0.44
12	12.75	0.90	0.50	12.50	0.55
13	13.75	0.90	0.50	13.50	0.55
14	14.80	0.90	0.50	14.50	0.55
15	15.80	0.90	0.50	15.50	0.55
16	16.85	0.90	0.50	16.50	0.55
17	17.85	0.90	0.50	17.50	0.55
19	20.00	1.10	0.60	19.60	0.66
	5 6 7 8 9 10 11 12 13 14 15 16	d1 d3 4 4.40 5 5.45 6 6.45 7 7.50 8 8.60 9 9.60 10 10.65 11 11.65 12 12.75 13 13.75 14 14.80 15 15.80 16 16.85 17 17.85	Bore d₁ d₃ min. Split lock b ± 0.10 4 4.40 0.50 5 5.45 0.50 6 6.45 0.50 7 7.50 0.50 8 8.60 0.70 9 9.60 0.70 10 10.65 0.70 11 11.65 0.70 12 12.75 0.90 13 13.75 0.90 14 14.80 0.90 15 15.80 0.90 16 16.85 0.90 17 17.85 0.90	d1 d3 min. b ± 0.10 s ± 0.02 4 4.40 0.50 0.30 5 5.45 0.50 0.30 6 6.45 0.50 0.30 7 7.50 0.50 0.30 8 8.60 0.70 0.40 9 9.60 0.70 0.40 10 10.65 0.70 0.40 11 11.65 0.70 0.40 12 12.75 0.90 0.50 13 13.75 0.90 0.50 14 14.80 0.90 0.50 15 15.80 0.90 0.50 16 16.85 0.90 0.50 17 17.85 0.90 0.50	Bore d1 d3 min. \$ ± 0.10 \$ ± 0.02 \$ − 0.05 4 4.40 0.50 0.30 4.30 5 5.45 0.50 0.30 5.30 6 6.45 0.50 0.30 6.30 7 7.50 0.50 0.30 7.30 8 8.60 0.70 0.40 8.40 9 9.60 0.70 0.40 9.40 10 10.65 0.70 0.40 10.40 11 11.65 0.70 0.40 11.40 12 12.75 0.90 0.50 12.50 13 13.75 0.90 0.50 13.50 14 14.80 0.90 0.50 15.50 15 15.80 0.90 0.50 15.50 16 16.85 0.90 0.50 17.50

Material 1.4310 (AISI 301). Subject to change. 1000 pieces per pack.

Test engineering

Orakel III

The test module developed by GRW can be freely lined to form test series. Automated and with a minimum of personnel expenditure, it tests the lifetime of high-speed dental handpieces, allowing for fast and efficient comparison of a development stage with the previously determined reference.

For evaluation of the performance characteristics of the entire system, the test process in respect of the mechanical load cycle and test criteria can be parameterized and is thus objectively reproducible. Calibration, test parameter settings and documentation of results are carried out on a commercially available PC. The actual test is carried out self-sufficiently.

Benefits:

- Up to 7,000 cycles can be executed without interruption.
- Uniform test process can be exactly reproduced.
- The operation of the modules only requires power and clean compressed air.
- Testing capacities can be expanded at any time by adding additional modules.
- Easy documentation: For each cycle, the measured speed is stored and can be written in a text file along with details of the completed testing time.
- Up to 10 modules can be controlled by one PC.

Note: Orakel III, the test module developed by GRW, is available for purchase. Contact us for more details.

GRW laboratory services

GRW – the specialists in high-precision miniature ball bearings now offer laboratory services as well.

Do you want to analyze materials? Do you need surface treatment but do not have your own laboratory or do you simply lack the expertise?

Then act flexibly and make use of the services of a competent analysis and chemistry laboratory!

We are the right partner, especially when it comes to such demanding procedures as FTIR spectroscopy with ATR technology or the functional and decorative gold plating of components.

GRW offers the following services:

General analysis, e.g. the determination of

- pH
- Acid concentration
- Oil or preservative content
- Evaporation residue
- Nitrite levels

Lubricant analysis with determination of protection by means of

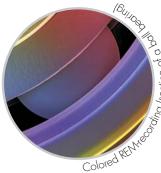
- Dissolving and filtering
- Microscopy
- FTIR analysis

SS:

Surface treatments

- Gold plating
- Ultrasonic cleaning
- Hot and cold bronze finishing
- Passivating high-alloy steels

Medical hygiene treatments


- Steam pressure sterilization
- Thermal desinfection

Condensation – and salt spray test

 Corrosion testing according to DIN 50021 / ASTM B117-73 As a partner of laboratory network GRW is able to offer you additional services apart from our own spectrum:

Examinations with scanning electron microscope (SEM) and X-ray spectroscopy (EDX)

X-ray fluorescence analysis (RFA)

Detailed analysis by means of differential scanning calorimetry (DSC)

Thermal gravimetric analysis (TGA)

90 I

Proper handling of GRW high-precision miniature bearings

GRW ball bearings are manufactured and packaged with extreme care to avoid contamination, corrosion, and other external influences on the bearings. When mounting ball bearings, please mind:

- Bearings should be stored in their original package in clean, dry rooms under constant temperature conditions.
- Bearings should only be removed from their original package shortly before they are mounted. Usage of gloves, finger cots, and tweezers are recommended.
- Assembly location has to be clean and bright. All mating parts have to be clean. A hard surface is preferred.
- When mounting a ball bearing, the assembly force must not be applied over the balls. Suitable mounting tools must be used. Non-compliance with these instructions may easily result in damage to balls or raceways, for example ball indentations may occur in the raceway.
- If glued interfaces are used, ensure that any excess glue does not enter the bearing.
- Re-lubrication should only be carried out with a lubricant of the same type and purity.

- We recommend to have the bearings lubricated by GRW as this is executed in a clean room shortly before packaging.
- Selective sorting of all mating parts will help to guarantee the proper fit of the bearing to the shaft or housing.
- We recommend a running in process for greaselubricated bearings prior to use at low speed to achieve optimum distribution of the lubricant.
- Electrical current running through the bearing should be avoided.

Bearing Analysis

Based on over 70 years of expertise, GRW can provide ball bearing analysis to establish the root cause of failure or to estimate the remaining life of the ball bearing. For more information about bearing analysis, please contact your nearest GRW Sales Representative.

Valuable results can be achieved when bearings are disassembled and examined after a certain period of operation before failure has occurred. Marking of the bearing rings during disassembly can help to reproduce original assembly characteristics.

Shaft assembly

Damage due to improper handling

						Possib	le cause					
Defect characteristics	Contami- nation	Assembly	Assembly tools	Adhesive	Lubricant	Termpera- ture	Speed	Load	Storage	Ambient media	Fitting/ contact	Design
Noisy	X	X		X	X							X
Mounting problems			X								×	X
Seized bearing	X	Х		X		X	X	X		X	X	
Corrosion	X								X	X	X	
Coloration						X				X		
Cracked rings								X			×	

Ball indentation in raceway acused by particles

Packaging

Correct packaging protects bearings from contamination, corrosion and damage during transport and storage. We recommend the package to open just prior to mounting and to use bearings with opened packages as soon as possible.

Each bearing package is labeled with the exact design specification and the respective product lot number, factory batch number, and the packaging date of the bearing.

Our Standard packaging options are as follows:

Strip Packaging "CP"

Our standard packaging contains ball bearings in one strip or pill pack, sealed individually in transparent synthetic film packets with a white backing. The quantity per strip depends upon the outside diameter of the bearing.

Vacuum Packaging "LL"

Bearings are bulk packaged in a transparent synthetic film pack and sealed under vacuum. The quantity per vacuum pack depends on the size of the bearing or as specified by the customer.

Spindle bearing Packaging "CP1P"

Spindle bearings are packed in a separate envelope marked 'GRW' (CP1) and boxed individually (CP1P) to avoid damage.

Special Packaging

GRW offers a wide range of packaging options based upon our customer's requests and the requirement profile of the bearing, for example, stick packaging or aluminum envelopes.

Manufacturing in a Nut Shell

GRW high-precision ball bearings are used in a variety of industries and applications.

Before they leave our factory, they have passed several complex manufacturing steps.

Their journey starts in the turning department where our highprecision turning machines produce bearing rings from a variety of steels used by GRW.

Turning department

Customized solutions since 1942.

Customizea

After heat treat, all critical dimensions and raceway geometries are precisely machined to the micron (μ). Interim quality measurements are made in the measurement room

Grinding department

since

Honing is the last step before assembly. The finished, bearing rings run through a final process on machines co-developed by GRW for surface finishing of the raceways.

Measurement room

During the final assembly, finished components are sorted and selected to guarantee customer satisfaction and in some cases automated assembly can be used to assemble, lubricate and package bearings.

Honing department

Index

Accessories	84-87	Materials	4, 83
Angular contact bearings	58	Materials for rings and balls	4
Axial clearance	18	Mating surfaces	10
Axial runout	10	Noise testing	24
Axial vibration test GPA	24	O configuration	60-61
Axial yield	17	Oils	8, 83
Bearing abbreviations	62	Operating speed	16
Bearing terms	62	Orakel III	88
	94-95	Outside diameter	19
Bearing tests	62	Packaging	92
Bearing types	73		5, 72
Bearing units		Packings Preface	
Bore circlips	86		3
Bore diameter	19	Profile rollers	72
Ceramic ball bearings	75	Quality	93
Certification	93	Radial play	18, 20
Classification of radial play	23	Radial yield	17
Closures	5, 58	Rating life	14, 15
Coated bearings	78	Reduction in radial play	20-22
Coating	78	Reference speed	16
Code calibration	19	Retainers for miniature ball bearings	6-7
Contact angle	18	Running accuracy	12, 26-29
Curvature	14, 18, 83	Shaft circlips (WSR)	86-87
Deep groove radial bearings - metric	30-51	Shape accuracy	26-29
Deep groove radial bearings - inch	52-57	Shims (AS)	84
Deformation, axial, radial	17	Snap retainer	6
Designation system for radial ball bearings	Cover	Solid retainer	6, 7
Designation system spindle ball bearings	62-63	Special bearings	76-77
Dimensional accuracy	26-29	Special installation configurations	11
Duplex ball bearings	59	Special treatment	8, 9
Duplexed bearings	59-60	Special variants	75-78
Dynamic imbalance	26-29	Speedmaster Speedmaster	88
Dynamic radial load rating	14	Spindle bearings	58, 62-71
Elastic behavior of deep groove radial bearings	17	Spring washers (WF)	84
Equivalent load, radial load	14	Starting torque	25
Fitting Tolerances	12-13	Static equivalent radial load	14
Flanged ball bearings, installation	11	Static radial load rating	14
Flanged ball bearings, types	11	Tandem configuration	60
Friction test	24	Tandem pairing	60
Friction torque	24-25	Thin-section bearings	74
Full ceramic ball bearings	75	Tilt angle	18
Full complement ball bearings	7	Tolerances for ball bearings	26-29
Functional tests	24-25	Tolerances for shaft and housing	13
Greases	8-9	Universal configuration	60
Grading of bore and outside diameter	19	Vibration testing	24
Handling of ball bearings (duplexed bearings)	59-60	X confi guration	60
Handling of ball bearings	90-91	XTRA special program	79-83
Hybrid ball bearings	4, 12, 75	special program	7 7 0 3
Installation and configuration of Duplex ball bearings	60	XTRAlon	6-7, 82
Laboratory services	89	XTRAIUDE	9, 81
Limiting speeds	14, 16, 83	XTRAfl ow	9,01
Load ratings and L-10 Life	14, 10, 63	Yield, axial, radial	17
Lubricants		ricia, axiai, idalal	17
LUDITCUIIIS	8		

This catalog is for general information purposes only, to point out our product portfolio. A general availability of the products shown cannot be guaranteed.

The rolling bearings contained in this catalog are basically standard products. When selecting the suitable bearing for a specific application, several influencing parameters must usually be taken into account which determine the function, reliability and economic efficiency of the bearing arrangement. This catalog contains only a simplified guide to the selection of potential rolling bearing types, but it is intended only for professional users who have the knowledge required for selection and is not intended to be a substitute for technical advice or adequate testing. If you do not have the necessary knowledge, please contact our Technical Support. It is generally the responsibility of the designer and user to ensure that all bearing specifications are met and that all necessary information is provided to the end user. This particularly affects applications where product failure and malfunction may endanger persons.

The illustrations and descriptions contained in the following are not to be understood as guaranteed product characteristics in the legal sense.

We reserve the right to make changes to the information and illustrations in this catalog. This catalog reflects the status at the time of preparation. More recent publications automatically take precedence over this catalog, provided they relate to the same subject and have been initiated by us. Therefore, please always check our electronic product catalog to see whether more up-to-date information or change notices are available for your desired product.

Although we have carefully checked and prepared all the information in this catalog, we can not guarantee freedom from errors or mistakes. We reserve the right to make corrections.

All rights reserved. Reprinting, duplication and translation - also in extracts - are only permitted with our written approval. Older catalog versions are completely replaced by this edition.

Gebr. Reinfurt GmbH & Co KG Rimpar, April 2021

About us:

GRW

Gebr. Reinfurt GmbH & Co. KG

Niederhoferstraße 105 D-97222 Rimpar P.O. Box 142

D-97219 Rimpar

phone: +49 (0) 93 65/819 - 0

fax: +49 (0) 93 65/819 -100

e-mail: info@grw.de web: www.grw.de Kommanditaesellschaft (Limited Partnership)

headquartered in Würzburg

Register Court: Würzburg HRA 467 Personally liable partner: Verwaltungsgesellschaft Reinfurt mbH headquartered in Würzburg

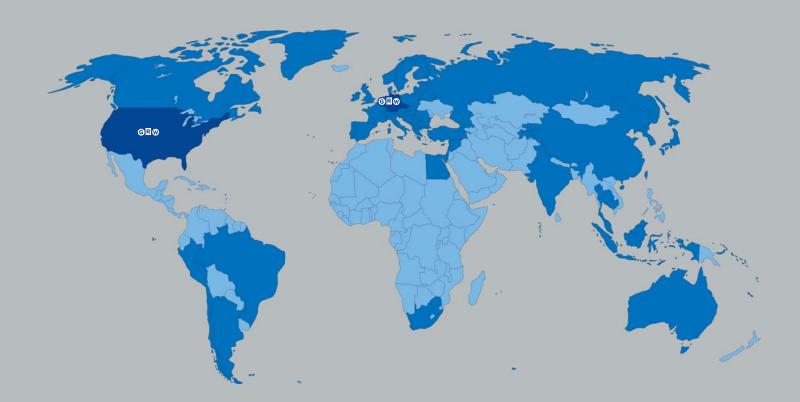
Register Court: Würzburg HRB 196 Sales tax ID: DE 811118985

Managing Director: Michael Wilhelm (Speaker),

Robert Paterson

For our current General Terms and Conditions,

please see: www.grw.de


Subject to errors and change without notice. All


rights reserved.

As of: 07/15

GEBR. REINFURT GMBH & CO. KG HOCHPRÄZISIONSKUGELLAGER

Niederhoferstraße 105 97222 Rimpar Germany

phone: +49 (0) 93 65/819 - 0 fax: +49 (0) 93 65/819 - 100

e-mail: info@grw.de web: www.grw.de